精英家教网 > 高中数学 > 题目详情
13.已知不等式组$\left\{\begin{array}{l}{x+y≤1}\\{x-y≥-1}\\{y≥0}\end{array}\right.$所表示的平面区域为D,直线l:y=3x+m不经过区域D,则实数m的取值范围是(  )
A.[-3,1]B.[-3,3]C.(-∞,-3)∪(1,+∞)D.(-∞,-3)∪(3,+∞)

分析 由题意作平面区域,求取两个临界值,结合图象求解即可.

解答 解:由题意作平面区域如下,

当直线l过点A(1,0)时,m=-3;
当直线l过点B(-1,0)时,m=3;
结合图象可知,
实数m的取值范围是(-∞,-3)∪(3,+∞),
故选:D.

点评 本题考查了线性规划的变形应用及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\sqrt{{(x-1)}^{2}}$+$\root{5}{{(x+1)}^{5}}$的值域是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,且|$\overrightarrow{a}$|=|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2,则|$\overrightarrow{b}$|+|$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.试将以下各式化为Asin(α+β)(A>0,β∈[0,2π))的形式:
(1)sinα+cosα;
(2)cosα-$\sqrt{3}$sinα;
(3)3sinα-4cosα;
(4)cosα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数在x=x0处的导数.
(1)f(x)=x•e2x+1+$\frac{lnx}{\sqrt{x}}$,(x0=1);
(2)f(x)=$\frac{tanx}{x}$,(x0=$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,若$\frac{a}{sinA}$=6,B=$\frac{π}{3}$,a+c=6,则△ABC的面积为$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,n),且2$\overrightarrow{a}$=$\overrightarrow{b}$,则2$\overrightarrow{a}$-3$\overrightarrow{b}$等于(  )
A.(-2,-4)B.(-3,-6)C.(-5,-10)D.(-4,-8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的偶函数f(x)满足:对任意的x∈R,有f(x+4)=f(x)-f(8),且当x∈[2,4]时,f(x)=-2x+8.若函数y=f(x)-ex-a在x∈(0,+∞)上至少有3个零点,则实数a的取值范围是[5-ln2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i为虚数单位,则i4=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

同步练习册答案