【题目】三角形ABC中,
,AC=1,以B为直角顶点作等腰直角三角形BCD(A、D在BC两侧),当∠BAC变化时,线段AD的长度最大值为._______________.
【答案】3
【解析】
△ABC中由正弦定理得BDsin∠ABC=sin∠BAC,在△ABD中由余弦定理得AD2=BD2+AC2﹣2BDABcos(90°+∠ABC),可化为5+4sin(∠BAC﹣45°),由此可求得答案.
如图所示
![]()
△ABC中,AB
,AC=1,
由正弦定理得
,
∴BCsin∠ABC=ACsin∠BAC,
∴BDsin∠ABC=sin∠BAC;
△ABD中,AD2=BD2+AB2﹣2BDABcos(90°+∠ABC)
=BD2+2+2
BDsin∠ABC
=AC2+AB2﹣2ACABcos∠BAC+2+2
sin∠BAC
=5﹣2
cos∠BAC+2
sin∠BAC
=5+4sin(∠BAC﹣45°),
∴当∠BAC=135°时AD2最大为9,AD最大值为3,
故答案为:3.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系内,已知点
,圆
的方程为
,点
是圆
上任意一点,线段
的垂直平分线
和直线
相交于点
.
(1)当点
在圆上运动时,求点
的轨迹方程;
(2)过点
能否作一条直线
,与点
的轨迹交于
两点,且点
为线段
的中点?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在二项式
的展开式中,
(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(最后结果用算式表达,不用计算出数值)
(2)若展开式前三项的二项式系数的和等于79,求展开式中系数最大的项.(最后结果用算式表达,不用计算出数值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号,某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据
,如表所示:
试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程
;
(2)用
表示用(1)中所求的线性回归方程得到的与
对应的产品销量的估计值.当销售数据
对应的残差的绝对值
时,则将销售数据
称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数
的分布列和数学期望
.
(参考公式:
;参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式.在某市,随机调查了200名顾客购物时使用手机支付的情况,得到如下的2×2列联表,已知从使用手机支付的人群中随机抽取1人,抽到青年的概率为
.
(I)根据已知条件完成2×2列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”?
2×2列联表:
青年 | 中老年 | 合计 | |
使用手机支付 | 120 | ||
不使用手机支付 | 48 | ||
合计 | 200 |
(Ⅱ)现采用分层抽样的方法从这200名顾客中按照“使用手机支付”和“不使用手机支付”抽取一个容量为10的样本,再从中随机抽取3人,求这三人中“使用手机支付”的人数的分布列及期望.
附:![]()
| 0.05 | 0.025 | 0.010 | 0.005 |
| 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为
,乙获胜的概率为
各局比赛结果相互独立.则甲在4局以内(含4局)赢得比赛的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com