精英家教网 > 高中数学 > 题目详情
若三棱锥P-ABC,AP,BP,CP两两垂直,AP=CP=2,BP=
5
,则P到面ABC的距离是
 
考点:棱锥的结构特征
专题:空间位置关系与距离
分析:取AC中点D,连结BD,PD,作PO⊥平面ABC,交BD于点O,由已知条件推导出在△PBD中,PD2+PB2=BD2,由
1
2
BD•PO
=
1
2
PD•PB
,能求出P到面ABC的距离PO.
解答: 解:如图,三棱锥P-ABC,AP,BP,CP两两垂直,
AP=CP=2,BP=
5

取AC中点D,连结BD,PD,作PO⊥平面ABC,交BD于点O,
AB=BC=
5+4
=3,AC=
4+4
=2
2

PD=
4-2
=
2
,BD=
9-2
=
7

在△PBD中,PD2+PB2=BD2
1
2
BD•PO
=
1
2
PD•PB

∴P到面ABC的距离PO=
PD•PB
BD
=
2
×
5
7
=
70
7

故答案为:
70
7
点评:本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系.直线l的参数方程是:
x=
2
2
t+m
y=
2
2
t.
(t是参数)
(1)求曲线C和直线l的普通方程;
(2)若直线l与曲线C相交于A,B两点,且|AB|=
14
,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(2x+
π
6
),x∈R.
(1)求f(x)的最小正周期、单调区间和对称轴.
(2)当x∈[-
π
4
π
4
]时,求f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x2,g(x)=f(x)+f′(x),(a>0)
(1)求函数f(x)的极大值和极小值;
(2)若x∈[0,2],函数g(x)在x=0处取得最大值,在x=2处取得最小值,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-x(x-a)2(x∈R)其中a∈R.
(1)当a=1时,求函数f(x)的极大值和极小值.
(2)当a=0时,不等式f(k-cosx)+f(cos2x-k2)≥0对任意x∈R恒成立.求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

等腰Rt△ABC斜边BC上的高AD=1,以AD为折痕将△ABD与△ACD折成互相垂直的两个平面后,某学生得出以下结论:

①BD⊥AC
②∠BAC=60°
③异面直线AB与CD之间的距离为
2
2

④点D到平面ABC的距离为
3
3

⑤直线AC与平面ABD所成的角为
π
4

其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xex-x-2在区间[k,k+1]上有解,则实数k的取值集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(x0,y0)为圆心,r为半径的圆的方程为(x-x02+(y-y02=r2,类比圆的方程,请写出在空间直角坐标系中以点P(x0,y0,z0)为球心,半径为r的球的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+φ)(ω>0),若f(
π
3
)=0,f(
π
2
)=-2,则实数ω的最小值为
 

查看答案和解析>>

同步练习册答案