精英家教网 > 高中数学 > 题目详情
已知sin(3π-α)=
2
cos(
3
2
π+β),
3
sin(
π
2
-α)=-
2
sin(
2
+β),且0<α<π,0<β<π,求sinα,cosβ.
考点:运用诱导公式化简求值,三角函数的化简求值
专题:三角函数的求值
分析:利用诱导公式可得sinα=
2
sinβ,
3
cosα
=
2
cosβ,利用平方关系可得sin2α+3cos2α=2(sin2β+cos2β)=2,cosα=±
2
2
.再利用0<α<π,可得α=
π
4
4
.即可解出sinα,cosβ.
解答: 解:∵sin(3π-α)=
2
cos(
3
2
π+β),
3
sin(
π
2
-α)=-
2
sin(
2
+β),
sinα=
2
sinβ,
3
cosα
=
2
cosβ,
∴sin2α+3cos2α=2(sin2β+cos2β)=2,
化为cos2α=
1
2
,∴cosα=±
2
2

∵0<α<π,∴α=
π
4
4

α=
π
4
时,∵sinα=
2
sinβ,
3
cosα
=
2
cosβ,0<β<π,
∴sinα=
2
2
,cosβ=
3
2

当α=
4
时,∵sinα=
2
sinβ,
3
cosα
=
2
cosβ,0<β<π,
∴sinα=
2
2
,cosβ=-
3
2
点评:本题考查了诱导公式、同角三角函数基本关系式、三角函数值所在象限的符号,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2(1+i3)
(1+i)2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

 如图,AB,CD是⊙O的两条弦,它们相交于P,连结AD,BD.已知AD=BD=4,PC=6,那么CD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(30°+a)=
3
2
,则cos(60°-α)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(-3,-4),则与
a
共线的单位向量是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若球的内接正方体的对角面面积为4
2
,则该球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把数列{
1
2n-1
}
的所有数按照从大到小的原则写成如下数表.第k行有2k-1个数,第t行的第s个数(从左数起)记为A(t,s),则A(8,17)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点在x轴上,它的一个顶点坐标为(0,1),离心率e=
2
5
,过椭圆的右焦点F作不与坐标轴垂直的直线l,交椭圆于A、B两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(1,0)满足(
MA
+
MB
)⊥
AB
,求直线l的方程;
(Ⅲ)设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C、B、N三点共线?若存在,求出定点N的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为1的正方体ABCD-A1B1C1D1中,动点M在线段AC1上,动点N在线段BC上,建立空间直角坐标系(如图所示),求线段MN长度最小值,以及此时点M,N的坐标.

查看答案和解析>>

同步练习册答案