14£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=$\frac{1}{2}$£¬an+1=an+$\frac{{{a}^{2}}_{n}}{{n}^{2}}$£¬ÊýÁÐ{bn}Âú×ãbn=$\frac{{a}_{n}}{n}$
£¨¢ñ£©Ö¤Ã÷£ºbn¡Ê£¨0£¬1£©
£¨¢ò£©Ö¤Ã÷£º$\frac{\frac{1}{{b}_{n+1}}-1}{\frac{1}{{b}_{n}}-1}$=$\frac{{b}_{n}+n+1}{{b}_{n}+n}$
£¨¢ó£©Ö¤Ã÷£º¶ÔÈÎÒâÕýÕûÊýnÓÐan$£¼\frac{11}{6}$£®

·ÖÎö £¨¢ñ£©ÓÉÒÑÖªbn=$\frac{{a}_{n}}{n}$ºÍan+1=an+$\frac{{{a}^{2}}_{n}}{{n}^{2}}$£¬µÃµ½${b}_{n+1}=\frac{{b}_{n}£¨n+{b}_{n}£©}{£¨n+1£©}$£¬È»ºóÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷0£¼bn£¼1£»
£¨¢ò£©°Ñ${b}_{n+1}=\frac{{b}_{n}£¨n+{b}_{n}£©}{n+1}$±äÐεÃ$\frac{1}{{b}_{n+1}}=\frac{n+1}{{b}_{n}£¨n+{b}_{n}£©}$£¬ÇóµÃ$\frac{1}{{b}_{n+1}}-1=\frac{n+1-{b}_{n}£¨n+{b}_{n}£©}{{b}_{n}£¨n+{b}_{n}£©}$£¬½øÒ»²½ÕûÀíµÃ´ð°¸£»
£¨¢ó£©ÓÉ£¨¢ò£©µÄ½áÂ۵õ½$\frac{1}{{b}_{n}}-1=£¨\frac{1}{{b}_{1}}-1£©•\frac{{b}_{1}+2}{{b}_{1}+1}•\frac{{b}_{2}+3}{{b}_{2}+2}¡­\frac{{b}_{n-1}+n}{{b}_{n-1}+n-1}$£¬·ÅËõºóµÃµ½${b}_{n}¡Ü\frac{2}{n+3}$£¬È»ºó½áºÏ${a}_{n+1}={a}_{n}+{{b}_{n}}^{2}$Öª£¬µ±n¡Ý2ʱ£¬
${a}_{n}={a}_{1}+{{b}_{1}}^{2}+{{b}_{2}}^{2}+¡­+{{b}_{n-1}}^{2}$$¡Ü{a}_{1}+4£¨\frac{1}{{4}^{2}}+\frac{1}{{5}^{2}}+¡­+\frac{1}{£¨n+2£©^{2}}£©$£¬ÔÙ·Å´óÖ¤µÃ´ð°¸£®

½â´ð Ö¤Ã÷£º£¨¢ñ£©ÓÉbn=$\frac{{a}_{n}}{n}$£¬ÇÒan+1=an+$\frac{{{a}^{2}}_{n}}{{n}^{2}}$£¬µÃ$£¨n+1£©{b}_{n+1}=n{b}_{n}+{{b}_{n}}^{2}$£¬
¡à${b}_{n+1}=\frac{{b}_{n}£¨n+{b}_{n}£©}{£¨n+1£©}$£¬ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º0£¼bn£¼1£®
¢ÙÓÉa1=$\frac{1}{2}$¡Ê£¨0£¬1£©£¬Öª0£¼b1£¼1£¬
¢Ú¼ÙÉè0£¼bk£¼1£¬Ôò${b}_{k+1}=\frac{{b}_{k}£¨k+{b}_{k}£©}{£¨k+1£©}$£¬
¡ß0£¼bk£¼1£¬¡à$0£¼\frac{k+{b}_{k}}{k+1}£¼1$£¬Ôò0£¼bk+1£¼1£®
×ÛÉÏ£¬µ±n¡ÊN*ʱ£¬bn¡Ê£¨0£¬1£©£»
£¨¢ò£©ÓÉ${b}_{n+1}=\frac{{b}_{n}£¨n+{b}_{n}£©}{n+1}$£¬¿ÉµÃ£¬$\frac{1}{{b}_{n+1}}=\frac{n+1}{{b}_{n}£¨n+{b}_{n}£©}$£¬
¡à$\frac{1}{{b}_{n+1}}-1=\frac{n+1-{b}_{n}£¨n+{b}_{n}£©}{{b}_{n}£¨n+{b}_{n}£©}$=$\frac{£¨1-{b}_{n}£©£¨1+{b}_{n}+n£©}{{b}_{n}£¨n+{b}_{n}£©}$=$£¨\frac{1}{{b}_{n}}-1£©•\frac{{b}_{n}+n+1}{{b}_{n}+n}$£®
¹Ê$\frac{\frac{1}{{b}_{n+1}}-1}{\frac{1}{{b}_{n}}-1}=\frac{{b}_{n}+n+1}{{b}_{n}+n}$£»
£¨¢ó£©ÓÉ£¨¢ò£©µÃ£º$\frac{1}{{b}_{n}}-1=£¨\frac{1}{{b}_{1}}-1£©•\frac{{b}_{1}+2}{{b}_{1}+1}•\frac{{b}_{2}+3}{{b}_{2}+2}¡­\frac{{b}_{n-1}+n}{{b}_{n-1}+n-1}$
$¡Ý£¨\frac{1}{{b}_{1}}-1£©•\frac{3}{2}•\frac{4}{3}¡­\frac{n+1}{n}$£¬
¹Ê${b}_{n}¡Ü\frac{2}{n+3}$£®
ÓÉ${a}_{n+1}={a}_{n}+{{b}_{n}}^{2}$Öª£¬µ±n¡Ý2ʱ£¬
${a}_{n}={a}_{1}+{{b}_{1}}^{2}+{{b}_{2}}^{2}+¡­+{{b}_{n-1}}^{2}$$¡Ü{a}_{1}+4£¨\frac{1}{{4}^{2}}+\frac{1}{{5}^{2}}+¡­+\frac{1}{£¨n+2£©^{2}}£©$
$¡Ü{a}_{1}+4£¨\frac{1}{3¡Á4}+\frac{1}{4¡Á5}+¡­+\frac{1}{£¨n+1£©£¨n+2£©}£©$=$\frac{1}{2}+4£¨\frac{1}{3}-\frac{1}{n+2}£©£¼\frac{11}{6}$£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆÊ½£¬¿¼²éÁËÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷Óë×ÔÈ»ÊýÓйصÄÃüÌ⣬ѵÁ·ÁË·ÅËõ·¨Ö¤Ã÷ÊýÁв»µÈʽ£¬¶ÔµÝÍÆÊ½µÄÑ­»·ÔËÓÃÊÇÖ¤Ã÷¸ÃÌâµÄ¹Ø¼ü£¬¿¼²éÁËѧÉúµÄÂß¼­Ë¼Î¬ÄÜÁ¦ºÍÁé»î´¦ÀíÎÊÌâµÄÄÜÁ¦£¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®½«¶þ½øÖÆÊý10001»¯ÎªÎå½øÖÆÊýΪ32£¨5£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¹Û²ìÏÂÁи÷ʽ£º$\root{3}{2+\frac{2}{7}}$=2•$\root{3}{\frac{2}{7}}$£¬$\root{3}{3+\frac{3}{26}}$=3$•\root{3}{\frac{3}{26}}$£¬$\root{3}{4+\frac{4}{63}}$=4•$\root{3}{\frac{4}{63}}$£¬¡­£¬Èô$\root{3}{9+\frac{9}{m}}$=9•$\root{3}{\frac{9}{m}}$£¬Ôòm=£¨¡¡¡¡£©
A£®80B£®81C£®728D£®729

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈôÔ²ÖùµÄ²àÃæ»ýºÍÌå»ýµÄÖµ¶¼ÊÇ12¦Ð£¬Ôò¸ÃÔ²ÖùµÄ¸ßΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èô£¨x6$+\frac{1}{x\sqrt{x}}$£©nµÄÕ¹¿ªÊ½Öк¬Óг£ÊýÏÔònµÄ×îСֵµÈÓÚ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{£¨¦Ð+2£©\sqrt{3}}{12}$B£®$\frac{£¨¦Ð+1£©\sqrt{3}}{12}$C£®$\frac{£¨2¦Ð+1£©\sqrt{3}}{12}$D£®$\frac{£¨2¦Ð+3£©\sqrt{3}}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Éè{an}Êǹ«²î²»ÎªÁãµÄµÈ²îÊýÁУ¬SnΪÆäǰnÏîºÍ£¬a22+a23=a28+a23£¬S7=7
£¨¢ñ£©Çó{an}µÄͨÏʽ
£¨¢ò£©Èô1+2log2bn=an+3£¨n¡ÊN*£©£¬ÇóÊýÁÐ{anbn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÊýÁÐ{an}Âú×ãan+1=e+an£¨n¡ÊN*£¬e=2.71828£©ÇÒa3=4e£¬Ôòa2015=2016£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìËÄ´¨³É¶¼ÆßÖиßÈý10Ô¶βâÊýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖªµÄÄÚ½ÇËù¶ÔµÄ±ß·Ö±ðΪ£¬Èô£¬£¬Ôò½ÇµÄ¶ÈÊýΪ£¨ £©

A£® B£® C£® D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸