分析 (1)连接AB,由点A为弧$\widehat{BF}$的中点,可得∠ABF=∠ACB,由BC是圆O的直径,则∠BAD=∠ACB,即∠ABF=∠BAD,即可求证AE=BE;
(2)由(1)可知:△ABG∽△ACB,AB2=AG•AC=9×16,RT△ABC中,由勾股定理知BC=$\sqrt{A{B}^{2}+A{C}^{2}}$,即可求得圆O的半径.
解答 解:(1)证明:连接AB,由点A为弧$\widehat{BF}$的中点,
故$\widehat{BA}$=$\widehat{AF}$,
∴∠ABF=∠ACB,
又∵AD⊥BC,BC是圆O的直径,
∴∠BAD=∠ACB,
∴∠ABF=∠BAD,
∴AE=BE;
(2)由(1)可知:△ABG∽△ACB,
∴AB2=AG•AC=9×16,
AB=12,
RT△ABC中,由勾股定理知BC=$\sqrt{A{B}^{2}+A{C}^{2}}$=20,
∴圆的半径为10.![]()
点评 本题考查圆的直径的性质,考查三角形相似的性质,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有最大值1,且为偶函数 | B. | 有最大值3,且为偶函数 | ||
| C. | 有最小值1,且为非奇非偶函数 | D. | 无最值,且为非奇非偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com