精英家教网 > 高中数学 > 题目详情
15.已知f(x)=3x+2xf′(1),则曲线f(x)在x=0处的切线在x轴上的截距为(  )
A.1B.5ln3C.-5ln3D.$\frac{1}{5ln3}$

分析 由题意求出f′(x)令x=1代入求出f′(1),可求出f(x)和f′(x)的表达式,再求出f(0)和f′(0)的值,代入点斜式方程化简求出切线方程,令y=0代入切线方程求出x的值即可.

解答 解:由题意知,f(x)=3x+2xf′(1),
∴f′(x)=(ln3)•3x+2f′(1),
令x=1代入上式得,f′(1)=(ln3)•3+2f′(1),
解得f′(1)=-3ln3,
∴f(x)=3x-6(ln3)x,f′(x)=(ln3)•3x-6ln3,
∴f(0)=1,f′(0)=ln3-6ln3=-5ln3,
则在x=0处的切线方程是y-1=-5ln3(x-0),即y=-5(ln3)x+1,
令y=0代入得,x=$\frac{1}{5ln3}$,
∴曲线f(x)在x=0处的切线在x轴上的截距为:$\frac{1}{5ln3}$,
故选:D.

点评 本题考查求导公式,导数的几何意义以及切线方程,以及直线的截距问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知i为虚数单位,则复数$\frac{1-3i}{1+i}$=(  )
A.2+iB.2-iC.-1-2iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,以椭圆的短半轴为半径的圆与直线x-y+$\sqrt{6}$=0相切.
(1)求椭圆C的方程;
(2)过椭圆的右焦点F的直线l1与椭圆交于A、B,过F与直线l1垂直的直线l2与椭圆交于C、D,与直线l3:x=4交于P;
①求证:直线PA、PF、PB的斜率kPA,kPF,kPB成等差数列;
②是否存在常数λ使得|AB|+|CD|=λ|AB|•|CD|成立,若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=lg(10x+1)-$\frac{x}{2}$的奇偶性是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.sin$\frac{5π}{12}$=(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知动圆C过定点(1,0)且与直线x=-1相切
(1)求动圆圆心C的轨迹方程;
(2)设过定点M (-4,0)的直线?与圆心C的轨迹有两个交点A,B,坐标原点为O,设∠xOA=α,∠xOB=β,试探究α+β是否为定值,若是定值,求定值,若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用数学归纳法证明:当n≥2,n∈N+时,(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{n+1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\frac{1}{3}$x3-ax(a>0),g(x)=bx2+2b-1,且a=1-2b.
(1)若函数y=f(x)在区间[2,+∞)内为增函数,求实数a的取值范围;
(2)当a=1时,求函数h(x)=f(x)+g(x)在区间[0,3]内的最值;
(3)当a=3时,求函数h(x)=f(x)+g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率e=$\frac{3}{5}$,左焦点为F,A,B,C为其三个顶点,直线CF与AB交于点D,若△ADC的面积为15.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在分别以AD,AC为弦的两个相外切的等圆?若存在,求出这两个圆的圆心坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案