精英家教网 > 高中数学 > 题目详情
不等式
x-1
x
>0的解集为
 
考点:其他不等式的解法
专题:不等式的解法及应用
分析:将原不等式转化为
x-1>0
x>0
x-1<0
x<0
,分别解之即可.
解答: 解:∵
x-1
x
>0,
x-1>0
x>0
x-1<0
x<0

解得:x>1或x<0,
∴原不等式的解集为{x|x>1或x<0}.
故答案为:{x|x>1或x<0}.
点评:本题考查分式不等式的解法,等价转化为相应的不等式组是关键,考查转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平行四边形ABCD中,M,N分别是CD,BC的中点,
AM
=(1,2) , 
AN
=(3,1),则
AB
AM
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=|lnx|-ax在区间(0,3]上有三个零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为{x|x∈R且x≠0},对定义域内的任意x1,x2,都有f(x1•x2)=f(x1)+f(x2),且当x>1时,f(x)>0,
(1)求f(-1)的值;
(2)求证:f(x)是偶函数;
(3)求证:f(x)在(0,+∞)上是增函数;
(4)当f(16)=2时,解不等式f(x)+f(6x-5)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)(x∈R)满足f(x+1)=f(x-1)且x∈[0,1]时f(x)=x,则函数g(x)=f(x)-log3|x|的零点个数共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=
2
,b=2,A=30°,则角B=(  )
A、45°
B、60°
C、45°或135°
D、60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x2-4x+3
的定义域是(  )
A、x∈R
B、x∈(0,3)
C、x∈(1,3)
D、x∈(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-
1
2
(x<0)与g(x)=ln(x+a)图象上存在关于y轴对称的点,则实数a的取值范围是(  )
A、(-∞,
1
e
B、(-∞,
e
C、(-
1
e
e
D、(-
e
1
e

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:log3(x2-3)=log3(x-
5
3
).

查看答案和解析>>

同步练习册答案