精英家教网 > 高中数学 > 题目详情

【题目】已知在某市的一次学情检测中,学生的数学成绩X服从正态分布N(105100),其中90分为及格线,120分为优秀线,下列说法正确的是(

附:随机变量服从正态分布N(),则P()0.6826P()0.9544P()0.9974.

A.该市学生数学成绩的期望为105

B.该市学生数学成绩的标准差为100

C.该市学生数学成绩及格率超过0.99

D.该市学生数学成绩不及格的人数和优秀的人数大致相等

【答案】AD

【解析】

根据正态分布的知识对选项逐一分析,由此确定正确选项.

依题意.

期望为105,选项A正确;方差为100,标准差为10,选项B错误;

该市85分以上占,故C错误;

由于,根据对称性可判断选项D正确.

故选:AD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数R上的奇函数,当时,,则函数上的所有零点之和为(

A.0B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场更新技术培育了一批新型的“盆栽果树”,这种“盆栽果树”将一改陆地栽植果树只在秋季结果的特性,能够一年四季都有花、四季都结果.现为了了解果树的结果情况,从该批果树中随机抽取了容量为120的样本,测量这些果树的高度(单位:厘米),经统计将所有数据分组后得到如图所示的频率分布直方图.

1)求

2)已知所抽取的样本来自两个实验基地,规定高度不低于40厘米的果树为“优品盆栽”,

i)请将图中列联表补充完整,并判断是否有的把握认为“优品盆栽”与两个实验基地有关?

优品

非优品

合计

基地

60

基地

20

合计

ii)用样本数据来估计这批果树的生长情况,若从该农场培育的这批“盆栽果树”中随机抽取4棵,求其中“优品盆栽”的棵树的分布列和数学期望.

附:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点,恰好又是双曲线的右焦点,双曲线过点,且其离心率为

(1)求抛物线和双曲线的标准方程;

(2)已知直线过点,且与抛物线交于两点,以为直径作圆,设圆轴交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象为C,如下结论中正确的是(

①图象C关于直线对称;②函数在区间内是增函数;

③图象C关于点对称;④由的图象向右平移个单位长度可以得到图象C

A.①③B.②③C.①②③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】常州别称龙城,是一座有着3200多年历史的文化古城.常州既有春秋淹城、天宁寺等名胜古迹,又有中华恐龙园、嬉戏谷等游乐景点,每年都有大量游客来常州参观旅游.为合理配置旅游资源,管理部门对首次来中华恐龙园游览的游客进行了问卷调查,据统计,其中的人计划只游览中华恐龙园,另外的人计划既游览中华恐龙园又参观天宁寺.每位游客若只游览中华恐龙园,得1分;若既游览中华恐龙园又参观天宁寺,得2.假设每位首次来中华恐龙园游览的游客均按照计划进行,且是否参观天宁寺相互独立,视频率为概率.

1)有2名首次来中华恐龙园游览的游客是拼车到常州的,求2名游客都是既游览中华恐龙园又参观天宁寺的概率;

2)从首次来中华恐龙园游览的游客中随机抽取3人,记这3人的合计得分为X,求X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求曲线的斜率为1的切线方程;

(Ⅱ)当时,求证:

(Ⅲ)设,记在区间上的最大值为Ma),当Ma)最小时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,AB=AD=2BC=2BCADABAD,△PBD为正三角形.且PA=2

1)证明:平面PAB⊥平面PBC

2)若点P到底面ABCD的距离为2E是线段PD上一点,且PB∥平面ACE,求四面体A-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.

1)写出曲线的普通方程和直线的直角坐标方程;

2)若直线与曲线相交于两点,求的面积.

查看答案和解析>>

同步练习册答案