分析 根据函数中存在“倍值区间”的两个条件:①f(x)在[m,n]上是单调函数,②$\left\{\begin{array}{l}{f(m)=2m}\\{f(n)=2n}\end{array}\right.或\left\{\begin{array}{l}{f(m)=2n}\\{f(n)=2m}\end{array}\right.$,对四个函数分别研究,从而确定是否存在“倍值区间”.
解答 解:函数中存在“倍值区间”的两个条件:①f(x)在[m,n]上是单调函数,②$\left\{\begin{array}{l}{f(m)=2m}\\{f(n)=2n}\end{array}\right.或\left\{\begin{array}{l}{f(m)=2n}\\{f(n)=2m}\end{array}\right.$,
对于①,f(x)=x2(x≥0)在[0.+∞)上单增调,若存在“倍值区间[m,n],⇒f(m)=2m,f(n)=2n⇒$\left\{\begin{array}{l}{{m}^{2}=2m}\\{{n}^{2}=2n}\end{array}\right.$⇒$\left\{\begin{array}{l}{m=0}\\{n=2}\end{array}\right.$,∴f(x)=x2(x≥0),存在“倍值区间”[0,2];
对于②,f(x)=ex(x∈R)在R上单增调,构建函数g(x)=ex-2x,∴g′(x)=ex-2,
∴函数在(-∞,ln2)上单调减,在(ln2,+∞)上单调增,
∴函数在x=ln2处取得极小值,且为最小值.
∵g(ln2)=2-ln2,∴g(x)>0,∴ex-2x=0无解,故函数不存在“倍值区间“;
对于③,f(x)=$\frac{4x}{{x}^{2}+1}=\frac{4}{x+\frac{1}{x}}$(x≠0),故f(x)在区间[0,1]上单调递增,在区间[1,+∞)上单调递减,
f(0)=0.f(1)=2∴存在“倍值区间”[0,1];
对于④,f(x)=log2(2x-$\frac{1}{8}$),则函数在定义域内为单调增函数,若存在“倍值区间”[m,n],
∴m,n是方程log2(2x-$\frac{1}{8}$)=2x的两个根,
∴m,n是方程22x-2x+$\frac{1}{8}$=0的两个根,
由于该方程有两个不等的正根,故存在“倍值区间”[m,n];
综上知,所给函数中存在“倍值区间”的有①③④.
故答案为:①③④.
点评 本题考查新定义,考查学生分析解决问题的能力,涉及知识点较多,计算量大,属于难题..
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{5}{13}$ | B. | $\frac{12}{13}$ | C. | $-\frac{12}{13}$ | D. | $\frac{5}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<a<1,-1<b<0 | B. | 0<a<1,0<b<1 | C. | 1<a,-1<b<0 | D. | 1<a,0<b<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}$=1 | B. | $\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}$=1 | C. | $\frac{{x}^{2}}{80}-\frac{{y}^{2}}{20}$=1 | D. | $\frac{{x}^{2}}{20}-\frac{{y}^{2}}{80}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com