精英家教网 > 高中数学 > 题目详情
1.己知α(0≤α≤2π)的终边过点(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),则α=$\frac{11π}{6}$.

分析 利用任意角的三角函数,直接求出α的正切值,再求α.

解答 解:锐角α终边上的一点P坐标是(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),cotα=$\frac{sin\frac{2π}{3}}{cos\frac{2π}{3}}$=tan$\frac{2π}{3}$=-$\sqrt{3}$,
点(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$)在第四象限.
所以α=$\frac{11π}{6}$.
故答案为:$\frac{11π}{6}$.

点评 本题考查终边相同的角,任意角的三角函数的定义,考查计算能力,分析问题解决问题的能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若向量$\overrightarrow{m}$=(-1,4)与$\overrightarrow{n}$=(2,t)的夹角为钝角,则函数f(t)=t2-2t+1的值域是(  )
A.($\frac{1}{4}$,81)∪(81,+∞)B.($\frac{1}{4}$,+∞)C.[0,81)∪(81,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=kx+b且f(1)=3,f(-1)=1,则2k+b=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\frac{x}{|x-1|}$,g(x)=1+$\frac{x+|x|}{2}$,若f(x)<g(x),则实数x的取值范围是(  )
A.(-∞,$\frac{-1-\sqrt{5}}{2}$)∪($\frac{-1+\sqrt{5}}{2}$,+∞)B.(-∞,$\frac{-1-\sqrt{5}}{2}$)∪($\frac{1+\sqrt{5}}{2}$,+∞)
C.($\frac{-1+\sqrt{5}}{2}$,$\frac{1+\sqrt{5}}{2}$)D.($\frac{-1+\sqrt{5}}{2}$,1)∪(1,$\frac{1+\sqrt{5}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.三棱锥P-ABC中,PA=PB=PC=4,BC=BA=2$\sqrt{2}$,BC⊥BA,P-ABC的各个顶点在一个球面上,则该球的表面积为$\frac{64π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知Sn是等差数列{an}的前n项和,若S5=5a4-10,则数列{an}的公差等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共线向量,$\overrightarrow{a}$=m$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=n$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,且mn≠0,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\frac{m}{n}$等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,$c=1,\;A=\frac{π}{4},\;\;C=\frac{π}{3}$,则a等于(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数a、b满足(a+i)(1-i)=3+bi,则复数a+bi的模为(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.5

查看答案和解析>>

同步练习册答案