分析 求函数的导数,利用函数单调性和导数之间的关系进行求解即可.
解答 解:函数的导数f′(x)=3x2-2mx-1,
若函数f(x)=x3-mx2-x+5在区间(0,1)内单调递减,
则f′(x)=3x2-2mx-1≤0在区间(0,1)上恒成立,
即3x2-1≤2mx,
则2m≥$\frac{3{x}^{2}-1}{x}$=3x-$\frac{1}{x}$,
设g(x)=3x-$\frac{1}{x}$,则函数g(x)在(0,1]上为增函数,
则g(x)<g(1)=3-1=2,
则2m≥2,
则m≥1,
即实数m的取值范围是[1,+∞),
故答案为:[1,+∞)
点评 本题主要考查函数单调性的应用,根据函数单调性和导数之间的关系转化为f′(x)≤0恒成立,利用参数分离法是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 4 | C. | $\frac{8}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | i | C. | 1 | D. | 1+i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1) | B. | (2) | C. | (3) | D. | (1)(2)(3)都是 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com