精英家教网 > 高中数学 > 题目详情
15.已知直线L1:mx-(m-2)y+2=0直线L2:3x+my-1=0且L1⊥L2则m=0或5.

分析 由直线垂直得到系数间的关系,化为关于m的方程求得m的值.

解答 解:直线L1:mx-(m-2)y+2=0,直线L2:3x+my-1=0,
由L1⊥L2,得3m-(m-2)m=0,即m2-5m=0,解得m=0或m=5.
故答案为:0或5.

点评 本题考查直线的一般式方程与直线垂直的关系,关键是熟记直线垂直与系数间的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设△ABC的三边a、b、c成等差数列,则tan$\frac{A}{2}$tan$\frac{C}{2}$的值(  )
A.3B.$\frac{1}{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是3.3米.(太阳光线可看作为平行光线)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤2x}\\{x+2y≤2}\\{x≤2}\end{array}\right.$,则z=2x+y的最大值为(  )
A.8B.6C.4D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角α的终边上一点P落在直线y=2x上,则sin2α=(  )
A.$-\frac{{2\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根据上述数据得到样本的频率分布表如下:
分组频数频率
[25,30]30.12
(30,35]50.20
(35,40]80.32
(40,45]n1f1
(45,50]n2f2
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某算法的程序框图如图所示,若输入量S=1,a=5,则输出S=20.(考点:程序框图)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等差数列{an}中,Sn为数列{an}的前n项和,若Sn=a,S2n=b,则S3n=3b-3a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则$\frac{1}{a}+\frac{1}{b}$的最小值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.4

查看答案和解析>>

同步练习册答案