分析 可先对f(-x)+f(x)=x2,两边对x取导数,根据x<0时,f′(x)<x,推出x>0时,f′(x)<x,求出f(0)=0,且f′(0)≤0,得到x∈R,都有f′(x)<x.构造函数F(x)=f(x)+$\frac{1}{2}$-f(1-x)-x,求导并推出F′(x)<0,且F($\frac{1}{2}$)=0,运用函数的单调性即可解出不等式.
解答 解:∵定义在R上的函数f(x)满足:
f(-x)+f(x)=x2,
两边对x求导,得-f′(-x)+f′(x)=2x,
∴f′(x)=f′(-x)+2x,
令x>0,则-x<0,
∵当x<0时,f′(x)<x,
∴f′(-x)<-x,
∴f′(x)<2x-x,即f′(x)<x,
又f(0)=0,直线y=x过原点,
∴f′(0)≤0,
∴x∈R,都有f′(x)<x,
令F(x)=f(x)+$\frac{1}{2}$-f(1-x)-x,则
F′(x)=f′(x)+f′(1-x)-1<x+1-x-1=0,
即F(x)是R上的单调减函数,且F($\frac{1}{2}$)=0,
∴不等式f(x)+$\frac{1}{2}$≥f(1-x)+x,
即F(x)≥0,即F(x)≥F($\frac{1}{2}$),
∴x≤$\frac{1}{2}$.
∴原不等式的解集为(-∞,$\frac{1}{2}$].
点评 本题主要考查运用导数研究函数的单调性,并应用单调性解不等式,同时考查构造函数研究函数的性质的能力,如何运用条件,两边对x求导,是解决此类题的关键,值得重视.
科目:高中数学 来源: 题型:选择题
| A. | ab | B. | ac | C. | bc | D. | $\frac{ab}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{4}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=sin(2x+$\frac{π}{6}$) | B. | f(x)=sin(2x+$\frac{π}{3}$) | C. | f(x)=sin(2x+$\frac{7π}{6}$) | D. | f(x)=sin(2x+$\frac{11π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com