精英家教网 > 高中数学 > 题目详情
13.已知正方体ABCD-A1B1C1D1中,E是A1B的中点,F是B1D1的中点,求证:EF∥平面BB1C1C.

分析 由题意画出图形连接EF,A1C1,A1B,BC1,由已知只要判定EF∥BC1,利用线面平行的判定定理得到.

解答 证明:如图连接EF,A1C1,A1B,BC1
因为E是A1B的中点,F是B1D1的中点,
所以EF∥BC1
EF?平面BB1C1C,BC1?平面BB1C1C,
所以EF∥平面BB1C1C.

点评 本题考查了正方体的性质以及线面平行的判定定理的运用;关键是熟练线面平行的判定定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知y=|sinx|+|cosx|是周期函数,它的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,AD为BC边上的中线,且b≠c,求证:tan∠ADB=$\frac{2bcsinA}{{b}^{2}-{c}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若x<2,求:函数y=x+$\frac{1}{x-2}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知在△ABC中,内角∠A、∠B、∠C的对边分别为a、b、c,且满足ccosB+bcosC=4acosA,求cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知边长为8$\sqrt{3}$的正三角形的一个顶点位于原点,另外有两个顶点在抛物线C:x2=2py(p>0)上.
(1)求抛物线C的方程;
(2)已知圆过定点D(0,2),圆心M在抛线线C上运动,且圆M与x轴交于A,B两点,设|DA|=l1,|DB|=l2,求$\frac{l_1}{l_2}$+$\frac{l_2}{l_1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在正三棱柱ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,D,E分别是CC1,AB的中点.
(Ⅰ)求证:CE∥平面A1BD;
(Ⅱ)若E到A1B的距离为$\frac{2\sqrt{5}}{5}$,求正三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)定义域为R,且f(x)+f(-x)=x2,当x<0时,f′(x)<x,求f(x)+$\frac{1}{2}$≥f(1-x)+x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=tan(ωx+φ)且对于定义域内任何实数x都有f(x)=f(x+1)-f(x+2)
(Ⅰ)求f(x)的周期T;
(Ⅱ)求证:tan(ωa+φ+3ω)=tan(ωa+φ-3ω)

查看答案和解析>>

同步练习册答案