精英家教网 > 高中数学 > 题目详情
设复数z满足(1+2i)z=4+3i.
(Ⅰ)求复数
.
z

(Ⅱ)当
2
3
<m<1时,试判断复数m(3+i)-
.
z
在复平面内对应的点位于哪个象限?写出推理过程.
考点:复数代数形式的乘除运算,复数的代数表示法及其几何意义
专题:数系的扩充和复数
分析:(Ⅰ)把给出的等式变形,然后利用复数代数形式的乘除运算化简求得z,则
.
z
可求;
(Ⅱ)把
.
z
代入m(3+i)-
.
z
,整理后结合m的范围得答案.
解答: 解:(Ⅰ)∵(1+2i)z=4+3i,
z=
4+3i
1+2i
=
(4+3i)(1-2i)
(1+2i)(1-2i)
=
10-5i
5
=2-i

.
z
=2+i

(Ⅱ)m(3+i)-
.
z
=m(3+i)-(2+i)=(3m-2)+(m-1)i

2
3
<m<1,
∴3m-2>0,m-1<0.
∴复数m(3+i)-
.
z
在复平面内对应的点位于第四象限.
点评:本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y,z∈R,且x+y+z=1,求证:
1
x
+
4
y
+
9
z
≥36.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2),圆O1的弦AB交圆O2于点C(O1不在AB上),求证:AB:AC为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点是F1(-1,0),F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项,若点P在第三象限,且∠PF1F2=120°,求tan∠F1PF2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图程序框图,
(1)试将此程序框图写成计算机程序(用当型循环结构写);
(2)写出此程序执行后输出的结果;
(3)若判断框里变成n<2k=17,其中k为大于1的正整数,写出程序执行后输出的结果.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是角A、B、C的对边,
m
=(2a+c,b),
n
=(cosB,cosC),且
m
n

(1)求角B的大小;
(2)设f(x)=2sinxcosxcos(A+C)-
3
2
cos2x,如果当x∈[0,
π
2
]时,不等式f(x)+λ≥0恒成立,求λ的最小值;
(3)在(2)的条件下,若将f(x)图象向左平移t(t>0)个单位后,所得图象为偶函数图象;将f(x)图象向右平移s(s>0)个单位后,所得图象为奇函数图象,求s+t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)-2f(
1
x
)=3x+2,求f(x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某船在A处看测得一个灯塔B在北偏东60°方向,之后该船以每小时15
2
km的速度向正东方向航行,行驶4小时后到达C处,在C处测得灯塔B在北偏东15°方向,此时该船与灯塔B的距离为
 
km.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x+1|-|x-2|<1的解集为
 

查看答案和解析>>

同步练习册答案