精英家教网 > 高中数学 > 题目详情
化简:tan(16°-x)tan(14°+x)+
3
[tan(16°-x)+tan(14°+x)].
考点:两角和与差的正切函数
专题:三角函数的求值
分析:利用tanα+tanβ=tan(α+β)(1-tanαtanβ),化简要求的式子,可得答案.
解答: 解:tan(16°-x)tan(14°+x)+
3
[tan(16°-x)+tan(14°+x)]
=tan(16°-x)tan(14°+x)+
3
 tan30°(1-tan(16°-x)•tan(14°+x)
=tan(16°-x)tan(14°+x)+
3
3
3
(1-tan(16°-x)•tan(14°+x)
=1.
点评:本题主要考查两角和的正切公式的变形应用,利用了tanα+tanβ=tan(α+β)(1-tanαtanβ),属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:m<1,命题q:函数f(x)=|x+3|+|x-m|+3+log2(4+m)在区间(0,+∞)为增函数,则命题p是命题q的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC+1=2sinAsinC.
(Ⅰ)求B的大小;
(Ⅱ)若a+c=
3
3
2
b=
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x+3(x≤0)
x2-2x(0<x≤2)
-x+2(x>2)

(1)若f(x)=-1,求x的值;  
(2)画出函数f(x)的图象;  
(3)求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2
π
4
+x)-
3
cos2x-1,x∈R
(1)求f(x)的最值和最小正周期;
(2)若h(x)=f(x+t)的图象关于点(-
π
6
,0)对称,且t∈(0,π),求t的值;
(3)设p:x∈[
π
4
π
2
],q:|f(x)-m|<3,若p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
lnx+x2-a
,若存在b∈[1,e],使得f(f(b))=b,则实数a的范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,sinA•sinB=cosA•cosB,则△ABC是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(α+
π
6
)-sinα=
3
3
5
,则sin(α+
6
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=
3
sin(ωx)-2sin2
ωx
2
+m
的最小正周期为3π(ω>0),且当x∈[0,π]时,函数f(x)的最小值为0,
(1)求函数f(x)的表达式;
(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

查看答案和解析>>

同步练习册答案