精英家教网 > 高中数学 > 题目详情
(本题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,CE∥AB。
(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,且CD与平面PAD所成的角为45°,求二面角B—PE—A的正切值。


DE=CE=AB=1,AE=2, (6分)连PE,BE
法一:以A为原点O,AD为OX轴,AB为OY轴,AP为OZ轴建立空间直角坐标系
A(0,0,0),B(0,1,0)E(2,0,0)
由(I)知AB为平面PAE的法向量且设平面PBE的法向量为

解之,得(8分)
设所求二面角的平面角为,则(12分)
法二:作于H,连BH,由(I)知平面AHB
为所求二面角的平面角 (10分)
中,由,得 (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知:求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是一个平面,则下列命题正确的是
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,已知四面体ABCD的四个面均为锐角三角形,E、F、G、H分别为边AB、BC、CD、DA上的点,BD∥平面EFGH,且EH=FG.

(1) 求证:HG∥平面ABC;
(2) 请在面ABD内过点E作一条线段垂直于AC,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,在直三棱柱中,分别是的中点,且.
(1)求证:
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线a∥平面的一个充分条件是(   )
A.存在一条直线bbab
B.存在一个平面
C.存在一个平面a
D.存在一条直线bab

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,求证:

查看答案和解析>>

同步练习册答案