精英家教网 > 高中数学 > 题目详情
已知,求证:
证明:      又    
          又
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.
⑴求证:平面ABM⊥平面PCD;
⑵求直线PC与平面ABM所成角的正切值;
⑶求点O到平面ABM的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若平面//平面,平面平面=直线m ,平面平面=直线n ,则m与n的位置关系是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在矩形ABCD中AB="1," BC=, 点P为矩形ABCD所
在平面外一点,PA⊥平面ABCD,点E为PA的中点。

(Ⅰ)求证:PC//平面BED;
(Ⅱ)求直线BD与平面PAB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,a,b是不重合的直线,是不重合的平面,则下列条件中可推出ab的是(   )
A.?B.
C.?D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,CE∥AB。
(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,且CD与平面PAD所成的角为45°,求二面角B—PE—A的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱的各条棱长都为a,P为上的点。
(1)试确定的值,使得PC⊥AB;
(2)若,求二面角P—AC—B的大小;
(3)在(2)的条件下,求到平面PAC的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设有直线m、n和平面.有下列命题
①若m∥,n∥,则m∥n      ②若m,n,m∥,n∥,则
③若,m,则m⊥④若,m⊥,m,则m∥
其中不正确的个数是(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线a∥平面,a∥平面直线b,则(    )
A.a∥b或a与b异面B.a∥bC.a与b异面D.a与b相交

查看答案和解析>>

同步练习册答案