【题目】给定函数和常数,若恒成立,则称()为函数的一个“好数对”,已知函数的定义域为.
(1)若(1,1)是函数的一个“好数对”,且,求,;
(2)若(2,0)是函数的一个“好数对”,且当时,,判断方程在区间[1,8]上根的个数;
科目:高中数学 来源: 题型:
【题目】我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献,这5部专著中有3部产生于汉、魏、晋、南北朝时期,某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(1)若a=1,b=2,求函数在点(2,f(2))处的切线方程;
(2)求函数的单调区间;
(3)若a<b,任取存在实数m使恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家为了了解某新产品使用者的年龄情况,现随机调査100 位使用者的年龄整理后画出的频率分布直方图如图所示.
(1)求100名使用者中各年龄组的人数,并利用所给的频率分布直方图估计所有使用者的平均年龄;
(2)若已从年龄在的使用者中利用分层抽样选取了6人,再从这6人中选出2人,求这2人在不同的年龄组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正六棱锥的底面边长为,高为.现从该棱锥的个顶点中随机选取个点构成三角形,设随机变量表示所得三角形的面积.
(1)求概率的值;
(2)求的分布列,并求其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量件 | 100 | 94 | 93 | 90 | 85 | 78 |
(1)若销量与单价服从线性相关关系,求该回归方程;
(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。
附:对于一组数据,,……,
其回归直线的斜率的最小二乘估计值为;
本题参考数值:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,经过椭圆的右焦点的弦中最短弦长为2.
(1)求椭圆的的方程;
(2)已知椭圆的左顶点为为坐标原点,以为直径的圆上是否存在一条切线交椭圆于不同的两点,且直线与的斜率的乘积为?若存在,求切线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的2×2列联表.请将列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
附参考公式及数据:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若一个四位数的各位数字相加和为,则称该数为“完美四位数”,如数字“”.试问用数字组成的无重复数字且大于的“完美四位数”有( )个
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com