精英家教网 > 高中数学 > 题目详情
如图,三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC.
(Ⅰ)设平面AEC∩平面DEF=a,求证DF∥a; 
(Ⅱ)若EF=CF=2BC,试同在线段BE上是否存在点G,使得平面DFG⊥平面CDE,若存在,请确定G点的位置;若不存在,说明理由.
考点:直线与平面垂直的性质,直线与平面平行的性质
专题:空间位置关系与距离
分析:(Ⅰ)由已知条件得AC∥DF,所以DF∥平面ACE,由此能证明DF∥a.
(Ⅱ)线段BE上存在点G,且BG=
1
3
BE,使得平面DFG⊥平面CDE.利用三角形全等和三角形相似进行证明.
解答: (Ⅰ)证明:在三棱台ABC-DEF中,AC∥DF,
∵AC?平面ACE,DF?平面ACE,
∴DF∥平面ACE,
∵DF?平面DEF,平面ACE∩平面DEF=a,
∴DF∥a.
(Ⅱ)解:线段BE上存在点G,且BG=
1
3
BE,使得平面DFG⊥平面CDE,
证明如下:
取CE中点O,连结FO并延长交BE于点G,连结GD、GF,
∵CF=EF,∴GF⊥CE,
在三棱台ABC-DEF中,AB⊥BC,∴DE⊥EF,
由CF⊥平面DEF,得CF⊥DE,又CF∩EF=F,
∴DE⊥平面DEF,∴DE⊥GF,
∵GF⊥CE,GF⊥DE,CE∩DE=E,∴GF⊥平面CDE,
又GF?平面DFG,∴平面DFG⊥平面CDE,
此时,如平面图所示,∵O为CE中点,CF=EF=2BC,
由平面几何知识,得△HOC≌△FOE,
∴HB=BC=
1
2
EF,
由△HGB∽△FOE,得
BG
GE
=
1
2

∴BG=
1
3
BE
点评:本题考查直线与直线垂直的证明,考查使得面面垂直的点是否存在的判断与证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的是(  )
①若a,b,c∈R且ac2>bc2,则a>b;
②若a,b∈R且a>b,则a3>b3
③若a,b∈R且ab≠0,则
a
b
+
b
a
≥2;
④函数f(x)=x+
1
x
(x≠0)的最小值是2.
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:
答对题目数 [0,8) 8 9 10
2 13 12 8
3 37 16 9
(Ⅰ)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;
(Ⅱ)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ACB=90°.以AB,BC为邻边作平行四边形ABCD,连接DA1和DC1. 
(Ⅰ)求证:A1D∥平面BCC1B1
(Ⅱ)求证:AC⊥平面ADA1

查看答案和解析>>

科目:高中数学 来源: 题型:

调查某家具厂油漆工患某种皮肤病情况,结果如下表:
工种

健康状况
非油漆工 油漆工 合计
健康人数 28
患病人数 2 8
合计 40
(Ⅰ)请将2×2列联表中的数据补充完整;
(Ⅱ)利用2×2列联表的独立性检验估计,能够以99%的把握认为“患该皮肤病与是否为油漆工”有关吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF∥AB,AF⊥CF.
(Ⅰ)若G为FC的中点,证明:AF∥面BDG;
(Ⅱ)求二面角A-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:实数x满足-2≤1-
x-1
3
≤2,命题q:实数x满足x2-2x+(1-m2)≤0(m>0),若?q是?p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边长分别为a,b,c,已知向量
m
=(2cos
A
2
,sin
A
2
),
n
=(cos
A
2
,2sin
A
2
),
m
n
=-1.
(1)求角A的值;
(2)若a=2
3
,b=2,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(3
3x2
-
1
x
n的展开式中各项系数之和为256,则展开式中第7项的系数是
 

查看答案和解析>>

同步练习册答案