精英家教网 > 高中数学 > 题目详情
6.设不等式|3x-$\frac{1}{2}$|+x$<\frac{3}{2}$的解集为M,a,b∈M.
(1)证明:|$\frac{1}{3}$a$+\frac{1}{6}$b|$<\frac{1}{4}$;
(2)比较|1-4ab|与2|a-b|的大小.

分析 (1)求出不等式的解集M,根据a,b的范围,证明即可;(2)通过作差比较大小即可.

解答 (1)证明:解不等式的集合M={x|-$\frac{1}{2}$<x<$\frac{1}{2}$},
∵a,b∈M,∴a,b∈(-$\frac{1}{2}$,$\frac{1}{2}$),
所以-$\frac{1}{6}$<$\frac{1}{3}$a<$\frac{1}{6}$,-$\frac{1}{12}$<$\frac{1}{6}$b<$\frac{1}{12}$,
两式相加得-$\frac{1}{4}$<$\frac{1}{3}$a+$\frac{1}{6}$b<$\frac{1}{4}$,即|$\frac{1}{3}$a+$\frac{1}{6}$b|<$\frac{1}{4}$.
(2)解:∵(1-4ab)2-4(a-b)2
=1-8ab+16a2b2-4a2+8ab-4b2
=(1-4a2)(1-4b2),
∵a,b∈(-$\frac{1}{2}$,$\frac{1}{2}$),
∴0<a2<$\frac{1}{4}$,0<b2<$\frac{1}{4}$,
∴1-4a2>0,1-4b2>0,
∴(1-4a2)(1-4b2)>0,
∴|1-4ab|>2|a-b|.

点评 本题考查了解不等式不等式问题,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图为函数y=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)的图象的一部分,则该函数解析式为y=3sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=cosx的图象经过点(  )
A.($\frac{π}{2}$,1)B.($\frac{π}{2}$,0)C.(π,0)D.(π,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,BF=1,平面BFED⊥平面ABCD.
(1)求证:AD⊥平面BFED;
(2)已知点P在线段EF上,$\frac{EP}{PF}$=2,求三棱锥E-APD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,y的最小值为4的是(  )
A.$y=x+\frac{4}{x},(x≠0)$B.y=-x2+2x+3
C.$y=sinx+\frac{4}{sinx}(0<x<π)$D.y=ex+4e-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点(3,1)和(-1,1)在直线3x-2y+a=0的同侧,则a的取值范围是{a|a<-7或a>5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|x-2|+1,g(x)=kx.若函数y=f(x)-g(x)有两个零点,则实数k的取值范围是(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},1)$C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.为方便游客出行,某旅游点有50辆自行车供租赁使用.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,每超1元,租不出的自行车就增加3辆.若每天管理自行车的总花费是115元,则当日租金为11元时,一日的净收入最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$\overrightarrow{a}$=(λ,2),$\overrightarrow{b}$=(-3,5),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角,则λ的取值范围是(  )
A.($\frac{10}{3}$,+∞)B.[$\frac{10}{3}$,+∞)C.(-∞,$\frac{10}{3}$)D.(-∞,$\frac{10}{3}$]

查看答案和解析>>

同步练习册答案