精英家教网 > 高中数学 > 题目详情
11.已知点(3,1)和(-1,1)在直线3x-2y+a=0的同侧,则a的取值范围是{a|a<-7或a>5}.

分析 根据点(3,1)和(-1,1)在直线3x-2y+a=0的同侧,得出(9-2+a)(-3-2+a)>0,求出a的取值范围.

解答 解:∵点(3,1)和(-1,1)在直线3x-2y+a=0的同侧,
∴(9-2+a)(-3-2+a)>0,
解得a<-7或a>5;
∴a的取值范围是{a|a<-7或a>5}.
故答案为:{a|a<-7或a>5}.

点评 本题考查了二元一次不等式(组)表示平面区域的问题,解题时应根据题意列出不等式,从而求出结果,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,
AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)若 B1C1⊥平面CEC1,求二面角B1-CE-C1的余弦值;
(Ⅱ)在线段C1E上是否存在一点M,使得直线AM与平面ADD1A1所成角的正弦值为$\frac{{\sqrt{2}}}{6}$,若存在,求EM:MC1的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.正四棱锥的侧棱长与底面边长都相等,E是SB的中点,则AE与SD所成角的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{2}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\sqrt{6}sin\frac{x}{2}cos\frac{x}{2}-\sqrt{2}{cos^2}\frac{x}{2}$.
(1)将函数f(x)化简成$Asin(ωx+φ)+B(其中A>0,ω>0,|φ|<\frac{π}{2})$的形式;
(2)求f(x)的单调递增区间;
(3)求函数f(x)在$[\frac{π}{2},π]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设不等式|3x-$\frac{1}{2}$|+x$<\frac{3}{2}$的解集为M,a,b∈M.
(1)证明:|$\frac{1}{3}$a$+\frac{1}{6}$b|$<\frac{1}{4}$;
(2)比较|1-4ab|与2|a-b|的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)若关于x的不等式|x-3|+|x+2|≤|2a+1|的解集不是空集,试求a的取值范围;
(2)已知关于x的不等式|x-a|≤4的解集为[-1,7],且两正数s和t满足2s+t=a,求证:$\frac{1}{s}+\frac{8}{t}≥6$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=-2ln(x+1)+$\frac{1}{2}$x2-a(x-2)(a∈R).
(1)当a=0时,求f(x)的单调区间和极值;
(2)若存在唯一整数x0使f(x0)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等差数列{an}满足a5=3,a7=-3,则数列{|an|}的前10项和为(  )
A.15B.75C.45D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.闭区间[0,5]上等可能的任取一个实数x,那么不等式x2-x-2≤0 成立的概率为$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案