分析 由条件利用两平行线间的距离公式,二次函数的性质,求得两平行线3x-4y+m-1=0和3x一4y+m2=0之间距离的最小值.
解答 解:由于两平行线3x-4y+m-1=0和3x一4y+m2=0之间距离为d=$\frac{|m-1{-m}^{2}|}{\sqrt{9+16}}$=$\frac{{|(m-\frac{1}{2})}^{2}+\frac{3}{4}|}{5}$,
故当m=$\frac{1}{2}$时,d取得最小值为$\frac{3}{20}$,
故答案为:$\frac{3}{20}$.
点评 本题主要考查两平行线间的距离公式的应用,要注意先把两直线的方程中x、y的系数化为相同的,然后才能用两平行线间的距离公式,二次函数的性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 0 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com