精英家教网 > 高中数学 > 题目详情
16.存在函数f(x)满足:对于任意x∈R都有(  )
A.f(sin2x)=sinxB.f(x2+2x)=|x+1|C.f(sin2x)=x2+xD.f(x2+1)=|x+1|

分析 对于A、C,分别令x=π、令x=$\frac{π}{2}$,推出矛盾,故排除A、C;对于选项B,令t=x2+2x(t≥-1),可得f(x)=$\sqrt{x+1}$(x≥-1),满足题意;对于D,分别令x=1、x=-1,推出矛盾,故排除D,从而得到答案.

解答 解:对于f(sin2x)=sinx,令x=π,则有f(sin2π)=f(0)=sinπ=0,再令x=$\frac{π}{2}$,可得f(sinπ)=f(0)=sin$\frac{π}{2}$=1,
矛盾,故f(sin2x)=sinx 不成立.
由f(x2+2x)=|x+1|=$\sqrt{{(x+1)}^{2}}$=$\sqrt{{x}^{2}+2x+1}$,令t=x2+2x(t≥-1),则f(t)=$\sqrt{t+1}$,
即f(x)=$\sqrt{x+1}$(x≥-1),满足题意.
对于f(sin2x)=x2+x,令x=π,则有f(sin2π)=f(0)=π2+π,再令x=$\frac{π}{2}$,可得f(sinπ)=f(0)=$\frac{{π}^{2}}{4}$+$\frac{π}{2}$,
矛盾,故f(sin2x)=x2+x不成立.
对于f(x2+1)=|x+1|,令x=1,可得f(2)=2,再令令x=-1,可得f(2)=0,
矛盾,故f(x2+1)=|x+1|不成立.
综上可得,只有B满足条件,
故选:B.

点评 本题考查函数解析式的求解及常用方法,关键是对题意的理解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列说法错误的是(  )
A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题
B.命题“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”
C.命题“p且q”为真命题,则命题p和命题q均为真命题
D.“x>3”是“x>2”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对数函数f(x)=(6m2+m-14)•log2x,则m=(  )
A.$\frac{3}{2}$或-$\frac{5}{3}$B.-$\frac{3}{2}$或$\frac{5}{3}$C.0或1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且4an+2=4an+1-an
(1)求a4的值;
(2)证明:{an+1-$\frac{1}{2}$an}为等比数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某工厂周一到周六轮到有甲乙丙3人值班,每人值两天,3人通过抽签决定每个人在哪两天值班,则周六由乙值班的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线l的参数方程是$\left\{\begin{array}{l}{x=1+2t}\\{y=2-t}\end{array}\right.$(t∈R),则l的斜率为(  )
A.-1B.$\frac{1}{2}$C.-$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.“0<a<3”是“双曲线$\frac{{x}^{2}}{a}$-$\frac{{y}^{2}}{9}$=1(a>0)的离心率大于2”的充要条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知 a1=3,a2=6,且 an+2=an+1-an,则a2011=(  )
A.3B.-3C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=log0.2(x2-6x+5)的递增区间是(-∞,1).

查看答案和解析>>

同步练习册答案