精英家教网 > 高中数学 > 题目详情
17.已知函数f′(x)=$\frac{1}{3}$x3+x2+ax.
(1)若f(x)在区间[1,+∞)单调递增,求a的最小值;
(2)若g(x)=$\frac{x}{{e}^{x}}$,对?x1∈[$\frac{1}{2}$,2],?x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,求a的范围.

分析 (1)若f(x)在区间[1,+∞)单调递增,转化为f′(x)=x2+2x+a≥0在区间[1,+∞)上恒成立,利用一元二次函数的性质即可求a的最小值;
(2)对?x1∈[$\frac{1}{2}$,2],?x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,等价为[f′(x)]max≤g(x)max,利用导数求出函数的最值即可.

解答 解:(1)函数的导数f′(x)=x2+2x+a,
若f(x)在区间[1,+∞)单调递增,
则等价为f′(x)=x2+2x+a≥0在区间[1,+∞)上恒成立,
即a≥-x2-2x=-(x+1)2+1在区间[1,+∞)上恒成立,
设y=-x2-2x=-(x+1)2+1在[1,+∞)上单调递减,
则函数y的最大值为-3,
即a≥-3,
即a的最小值是-3;
(2)对?x1∈[$\frac{1}{2}$,2],?x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,
则等价为[f′(x)]max≤g(x)max
∵f′(x)=x2+2x+a=(x+1)2+a-1在[$\frac{1}{2}$,2]上单调递增,
∴[f′(x)]max=[f′(2)]=8+a,
∵g′(x)=$\frac{{e}^{x}-x{e}^{x}}{{e}^{2x}}=\frac{1-x}{{e}^{x}}$,
∴g(x)在(-∞,1]上单调递增,则[1,+∞)上单调递减,
∴在[$\frac{1}{2}$,2]上g(x)max=g(1)=$\frac{1}{e}$,
∴8+a≤$\frac{1}{e}$,
即a≤$\frac{1}{e}$-8.

点评 本题主要考查函数单调性的应用以及函数最值的求解,根据条件将不等式进行转化,利用一元二次函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知P为抛物线x2=4y上的动点,点P到直线y=-1的距离为d,定点A(2,0),则d+|PA|的最小值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:$\frac{(2n)!}{{2}^{n}•n!}$=1•3•5•…•(2n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=a(x-$\frac{1}{x}$)-lnx(x∈R).
(1)若a=1,求曲线y=f(x)在点(1,f(x))处的切线方程;
(2)若函数f(x)在其定义域内为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=(-2ax+a+1)ex
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若0≤a≤1,求函数f(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\frac{1}{2}$x+cosx,x∈[0,2π]的单调减区间为($\frac{π}{6}$,$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f (x)=x+ln x,且当x>0时,有(x-k)f′(x)>$\frac{4}{5}$x+4恒成立,则满足题设条件的k的最大整数为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知抛物线C:y2=2x的焦点为F,抛物线C上的两点A,B满足$\overrightarrow{AF}$=2$\overrightarrow{FB}$.若点T(-$\frac{1}{2}$,0),则$\frac{|TA|}{|TB|}$的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于R上可导函数f(x),若满足(x-a)f′(x)≥0,则必有(  )
A.?x∈R,f(x)≤f(a)B.?x0∈R,?x∈(-∞,x0),f′(x)>0
C.?x0∈R,?x∈(x0,+∞),f′(x)<0D.?x∈R,f(x)≥f(a)

查看答案和解析>>

同步练习册答案