精英家教网 > 高中数学 > 题目详情

已知函数f(x)=alnx-ax-3(a∈R,a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为数学公式,问:m在什么范围取值时,对于任意的t∈[1,2],函数数学公式在区间[t,3]上总存在极值?
(Ⅲ)当a=2时,设函数数学公式,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.

解:(Ⅰ)∵f′(x)=-a=a()(x>0),
∴(1)当a>0时,令f′(x)>0时,解得0<x<1,所以f(x)在(0,1)递增;
令f′(x)<0时,解得x>1,所以f(x)在(1,+∞)递减.
当a<0时,f′(x)=-a(),令f′(x)>0时,解得x>1,所以f(x)在(1,+∞)递增;
令f′(x)<0时,解得0<x<1,所以f(x)在(0,1)递减;
(Ⅱ)因为函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,
所以f′(2)=1,所以a=-2,f′(x)=-+2,
g(x)=x3+x2[+f′(x)]=x3+x2[+2-]=x3+(2+)•x2-2x,
∴g′(x)=3x2+(4+m)x-2,
因为对于任意的t∈[1,2],函数g(x)=x3+x2[+f′(x)]在区间[t,3]上总存在极值,
所以只需 g′(2)<0 g′(3)>0,解得-<m<-9;
(Ⅲ)∴令F(x)=h(x)-f(x)=(p-2)x--3-2lnx+2x+3=px---2lnx,
①当p≤0时,由x∈[1,e]得px-≤0,--2lnx<0.
所以,在[1,e]上不存在x0,使得h(x0)>f(x0)成立;
②当p>0时,F′(x)=
∵x∈[1,e],
∴2e-2x≥0,px2+p>0,F′(x)>0在[1,e]上恒成立,故F(x)在[1,e]上单调递增.
∴F(x)max=F(e)=pe--4.
故只要pe--4>0,,解得p>.所以p的取值范围是[,+∞).
分析:(Ⅰ)求出f′(x)对a分类讨论,由f′(x)>0时,得到函数的递增区间;令f′(x)<0时,得到函数的递减区间;
(Ⅱ)因为函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,得到f′(2)=1求出a的值代入到g(x)=中化简,求出导函数,因为函数在[t,3]上总存在极值得到 g′(t)<0,g′(3)>0 解出m的范围记即可;
(Ⅲ)F(x由题意构建新函数F(x))=f(x)-g(x),这样问题转化为使函数F(x)在[1,e]上至少有一解的判断.
点评:(Ⅰ)考查学生利用导数研究函数单调性的能力,(Ⅱ)利用导数研究曲线上某点切线方程的能力,会根据直线的倾斜角求直线的斜率,(III)此处重点考查了等价转化的思想,把问题转化为构建一新函数,并考查了函数F(x)在定义域下恒成立问题数式中含字母系数,需分类讨论,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案