精英家教网 > 高中数学 > 题目详情

【题目】某车间用一台包装机包装葡萄糖,每袋葡萄糖的重量是一个随机变量,它服从正态分布.当机器工作正常时,每袋葡萄糖平均重量0.5kg,标准差0.015kg.

1)已知包装每袋葡萄糖的成本为1元,若发现包装好的葡萄糖重量异常,则需要将该袋葡萄糖进行重新包装,假设重新包装后的葡萄糖重量正常.若某袋葡萄糖的重量满足,则认为该袋葡萄糖重量正常. 问:在机器工作正常的情况下,至少包装多少袋葡萄糖才能使至少有一袋包装好的葡萄糖重量正常的概率大于0.98?并求出相应成本的最小期望值.

2)某日开工后, 为检査该包装机工作是否正常, 随机地抽取它所包装的葡萄糖9袋,若抽取的9袋葡萄糖称得净重(kg)为:0.496 0.508 0.524 0.519 0.495 0.510 0.522 0.513 0.512.用样本平均数作为的估计值,以作为检验统计量,其中为样本总数,服从正态分布,且.

①若机器工作正常时, 每袋葡萄糖的重量服从的正态分布曲线如下图所示,且经计算得上述样本数据的标准差0.022.请在下图(机器正常工作时的正态分布曲线)中,绘制出以该样本作为估计得到的每袋葡萄糖所服从的正态分布曲线的草图.

②若,就推断该包装机工作异常,这种推断犯错误的概率不超过,试以95%的可靠性估计该包装机工作是否正常.

附: 若随机变量服从正态分布:

参考数据:

【答案】1)至少包装4袋葡萄糖,最小期望值为5.2696元;(2)①作图见解析;②在犯错误概率不超过0.05的前提下,认为该包装机工作异常,应该进行调试.

【解析】

1)每袋葡萄糖的重量服从正态分布,先根据题意求出1次包装葡萄糖重量正常的概率,则次独立重复包装葡萄糖重量正常的袋数服从二项分布,根据二项分布的概率公式求出能使至少有一袋包装的葡萄糖重量正常的概率大于0.98的包装次数,此时相应的成本为,由期望公式,求出相应成本的最小期望值;

2)①根据给出的数据求出,则0.022,注意的右侧,且峰值略低于原图像峰值,作出图象;

②根据所给的 ,由公式,结合,下结论.

解:(1)由题意可知,机器工作正常的情况下毎袋葡萄糖的重量服从正态分布

,次独立重复包装葡萄糖重量正常的袋数.

,知服从二项分布 .

于是

解得:

故需至少包装4袋葡萄糖,才能使至少有一袋包装的葡萄糖重量正常的概率大于0.98.

故相应成本

所以相应成本的最小期望值为5.2696.

2)①如图所示,经计算得

,(绘图时只需保证的右侧,且峰值略低于原图像峰值)

②易得

所以在犯错误概率不超过0.05的前提下,认为该包装机工作异常,应该进行调试.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于x的函数在区间D上恒有

1)若,求h(x)的表达式;

2)若,求k的取值范围;

3)若求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系内,点AB的坐标分别为P是坐标平面内的动点,且直线的斜率之积等于设点P的轨迹为C.

1)求轨迹C的方程;

2)设过点且倾斜角不为0的直线与轨迹C相交于MN两点,求证:直线的交点在直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:

男生

女生

支持

不支持

支持

不支持

方案一

200

400

300

100

方案二

350

250

150

250

假设所有学生对活动方案是否支持相互独立.

(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;

(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;

(Ⅲ)将该校学生支持方案的概率估计值记为,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为,试比较的大小.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数)的部分图象如图所示,则下列结论正确的是(

A.

B.若把函数的图像向左平移个单位,则所得函数是奇函数

C.若把的横坐标缩短为原来的倍,纵坐标不变,得到的函数在上是增函数

D.,若恒成立,则的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在中,为直角,,沿折起,使,得到如图②的几何体,点在线段.

1)求证:平面平面

2)若平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数.

(Ⅰ)证明:当时,

(Ⅱ)若曲线过点的切线有两条,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知焦点为的抛物线上有一动点,过点作抛物线的切线轴于点.

1)判断线段的中垂线是否过定点,若是求出定点坐标,若不是说明理由;

2)过点的垂线交抛物线于另一点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)当时,判断在定义域上的单调性;

)若上的最小值为,求的值.

查看答案和解析>>

同步练习册答案