精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,二元方程f(x,y)=0的曲线为C,若存在一个定点A和一个定角θ(θ∈(0,2π)),使得曲线C上的任意一点以A为中心顺时针(或逆时针)旋转角θ,所得到的图形与原曲线重合,则称曲线C为旋转对称曲线,给出以下方程及其对应的曲线,其中是旋转对称曲线的是
 
(填上你认为正确的曲线).
C1
x2
4
+y2
=1; C2
1-|x|
1-|y|
=0;
C3:x2-y=0(x∈[-2,2]); C4:y-cosx=0(x∈[0,π])
考点:曲线与方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:利用旋转对称曲线的定义,确定一个定点A和一个定角θ(θ∈(0,2π)),即可得出结论.
解答: 解:由题意,C1
x2
4
+y2
=1,存在一个定点A(0,0)和一个定角θ=π; 
C2
1-|x|
1-|y|
=0,存在一个定点A(0,0)和一个定角θ=
π
2

C3:x2-y=0(x∈[-2,2])是轴对称图形,不是中心对称图形;
C4:y-cosx=0(x∈[0,π]),存在一个定点A(
π
2
,0)和一个定角θ=π,
故答案为:C1,C2,C4
点评:本题考查曲线与方程,考查旋转对称曲线的定义,正确理解旋转对称曲线的定义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
-x+3a,x<0
ax,x≥0
(a>0
,且a≠1),在定义域R上满足
f(x2)-f(x1)
x1-x2
>0
,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则∠C等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AD∥BC,BC⊥CD=4,已知AD=5,BC=4,CD=
3
,点E,F分别在AB,AD上,且EF⊥AB,沿EF将△AEF折起到△A′EF的位置,使A′E⊥EB,连接A′B,A′C,A′D
(1)求证:A′E⊥平面BCDFE;
(2)试确定点E的位置,使平面A′EF与平面A′BC所成的二面角的余弦值为
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

sinθ+cosθ
sinθ-cosθ
=2
,则2sinθcosθ=(  )
A、-
3
10
B、
3
5
C、±
3
5
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
b
满足|
a
|=|
b
|=|
a
+
b
|=1,则
a
b
的值为
 
a
b
的夹角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c>0且a(a+b+c)+bc=4-2
3
,则2a+b+c的最小值为(  )
A、
3
-1
B、
3
+1
C、2
3
-2
D、2
3
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(x,4),
b
=(-1,2),若
a
b
的夹角为锐角,则x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为鼓励中青年教师参加篮球运动,校工会组织了100名中青年教师进行投篮活动,每人投10次,投中情况绘成频率分布直方图(如图),则这100 名教师投中6至8个球的人数为
 

查看答案和解析>>

同步练习册答案