| A. | 2个 | B. | 6个 | C. | 8个 | D. | 10个 |
分析 根据题意,分类讨论,考虑全为0;全为1;三个0,一个1;两个0,两个1,即可得出结论.
解答 解:由 $|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|$=0,
可得a11a22-a12a21=0,
由于a11,a12,a21,a22∈{0,1},
可得矩阵$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array})$可以是$(\begin{array}{l}{0}&{0}\\{0}&{0}\end{array})$,$(\begin{array}{l}{1}&{1}\\{1}&{1}\end{array})$,$(\begin{array}{l}{0}&{0}\\{0}&{1}\end{array})$,$(\begin{array}{l}{1}&{0}\\{0}&{0}\end{array})$,
$(\begin{array}{l}{0}&{1}\\{0}&{0}\end{array})$,$(\begin{array}{l}{0}&{0}\\{0}&{1}\end{array})$,$(\begin{array}{l}{0}&{1}\\{0}&{1}\end{array})$,$(\begin{array}{l}{1}&{1}\\{0}&{0}\end{array})$,$(\begin{array}{l}{1}&{0}\\{1}&{0}\end{array})$,$(\begin{array}{l}{0}&{0}\\{1}&{1}\end{array})$.
则这样的互不相等的矩阵共有10个.
故选:D.
点评 本题考查二阶矩阵,解题的关键是利用二阶矩阵的含义,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 56 | B. | 68 | C. | 78 | D. | 82 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要 | B. | 必要非充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1009 | B. | 1008 | C. | 1007 | D. | 1006 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A=B | B. | A⊆B | C. | B⊆A | D. | 以上都不对 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com