分析 (1)利用同角三角函数基本关系式,化简表达式为正切函数的形式,代入求解即可.
(2)利用同角三角函数基本关系式,化简表达式为正切函数的形式,代入求解即可.
解答 解:tanα=2,
(1)$\frac{2cosα+3sinα}{3cosα+sinα}$=$\frac{2+3tanα}{3+tanα}$=$\frac{8}{5}$;
(2)$\frac{3}{4}$sin2α+$\frac{1}{2}$cos2α=$\frac{\frac{3}{4}si{n}^{2}α+\frac{1}{2}co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{\frac{3}{4}ta{n}^{2}α+\frac{1}{2}}{ta{n}^{2}α+1}$=$\frac{3+\frac{1}{2}}{4+1}$=$\frac{7}{10}$.
点评 本题考查同角三角函数基本关系式的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2+π | B. | 2+$\frac{π}{2}$ | C. | 4+2π | D. | 4+4π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,0)∪(0,1) | B. | [-2,0)∪[1,+∞) | C. | [-2,1] | D. | (-∞,-2]∪(0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | $\frac{3\sqrt{3}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com