【题目】设一元二次方程Ax2+Bx+C=0,根据下列条件分别求解:
(1)若A=1,B、C是1枚骰子先后掷两次出现的点数,求方程有实数根的概率;
(2)若B=-A,C=A-3,且方程有实数根,求方程至少有一个非正实数根的概率.
【答案】(1)
; (2)
.
【解析】
(1)由题意知本题是一个古典概型,试验发生所包含的事件数36,满足条件的事件是当
时
,变为
方程有实数解得
显然
,列举出所有的事件,得到概率.
(2)由题意知本题是一个几何概型,试验发生包含的事件是
随机的取实数使方程有实数根,根据一元二次方程判别式得到
的范围,满足条件的事件是使得方程有至少有一个非负实数根,根据对立事件的概率得到结果.
解:(1)由题意知本题是一个古典概型,
当
时
,变为![]()
方程有实数解得
显然![]()
若
时
;1种
若
时
,2;2种
若
时
,2,3,4;4种
若
时
,2,3,4,5,6;6种
若
时
,2,3,4,5,6;6种故有19种,
方程有实数根的概率是![]()
(2)
,
,且方程有实数根,得
,△
,得![]()
而方程有两个正数根的条件是:
,
,![]()
即![]()
故方程有两个正数根的概率是![]()
而方程至少有一个非正实数根的对立事件是方程有两个正数根故所求的概率为![]()
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以
为极点,
轴为正半轴为极轴建立极坐标系.已知曲线
的极坐标方程为
,直线
与曲线
相交于
两点,直线
过定点
且倾斜角为
交曲线
于
两点.
(1)把曲线
化成直角坐标方程,并求
的值;
(2)若
成等比数列,求直线
的倾斜角
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设点
,
,
(其中
表示a、b中的较大数)为
、
两点的“切比雪夫距离”.
(1)若
,Q为直线
上动点,求P、Q两点“切比雪夫距离”的最小值;
(2)定点
,动点
满足![]()
,请求出P点所在的曲线所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四面体ABCD中,DA=DB=DC=
且DA、DB、DC两两互相垂直,点
是△ABC的中心.
![]()
(1)求直线DA与平面ABC所成角的大小(用反三角函数表示);
(2)过
作OE⊥AD,垂足为E,求ΔDEO绕直线DO旋转一周所形成的几何体的体积;
(3)将△DAO绕直线DO旋转一周,则在旋转过程中,直线DA与直线BC所成角记为
,求
的取值范图.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
是菱形,
是矩形,平面
平面
,
,
,
,
为
的中点.
![]()
(1)求证:
∥平面
;
(2)在线段
上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的焦距为2,左右焦点分别为
,
,以原点O为圆心,以椭圆C的半短轴长为半径的圆与直线
相切.
Ⅰ
求椭圆C的方程;
Ⅱ
设不过原点的直线l:
与椭圆C交于A,B两点.
若直线
与
的斜率分别为
,
,且
,求证:直线l过定点,并求出该定点的坐标;
若直线l的斜率是直线OA,OB斜率的等比中项,求
面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com