精英家教网 > 高中数学 > 题目详情

【题目】设全集U=R,集合 ,P={x|﹣1≤x≤4},则(UM)∩P等于(
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3≤x≤4}
D.{x|3<x≤4}

【答案】D
【解析】解:∵ ={x|﹣2≤x≤3},
∴CUM═{x|x<﹣2或x>3},
又P={x|﹣1≤x≤4},
∴(CUM)∩P={x|3<x≤4}
故选D
【考点精析】解答此题的关键在于理解交、并、补集的混合运算的相关知识,掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法,以及对绝对值不等式的解法的理解,了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过定点.

与圆相切,求的方程;

与圆相交于两点,求的面积的最大值,并求此时直线的方程.(其中点C是圆C的圆心)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m件,且当月销完,你估计哪个月份盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项的和为Sn , 已知a1=1, =12.
(1)求{an}的通项公式an
(2)bn= ,bn的前n项和Tn , 求证;Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点A(-1,0),8(0,3),圆心C在第一象限,线段AB的垂直平分线交圆C 于点D,E,DE =2

(1)求直线DE的方程;

(2)求圆C的方程;

(3)过点(0,4)作圆C的切线,求切线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱,侧面.

(Ⅰ)若分别是的中点,求证:

(Ⅱ)若三棱柱的各棱长均为2,侧棱与底面所成的角为,问在线段上是否存在一点,使得平面?若存在,求的比值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为对数函数,并且它的图象经过点,函数=在区间上的最小值为,其中.

(1)求函数的解析式;

(2)求函数的最小值的表达式;

(3)是否存在实数同时满足以下条件:①;②当的定义域为时,值域为.若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案