精英家教网 > 高中数学 > 题目详情

【题目】已知在△ABC中,角A、B、C的对边分别为a、b、c,且满足cos2A﹣cos2B=2cos( ﹣A)cos( +A).
(1)求角B的值;
(2)若b= 且b≤a,求2a﹣c的取值范围.

【答案】
(1)解:∵在△ABC中,cos2A﹣cos2B=2cos( ﹣A)cos( +A)=2( cosA+ sinA)( cosA﹣ sinA)

=2( cos2A﹣ sin2A)= cos2A﹣ sin2A= ﹣2sin2A.

又∵cos2A﹣cos2B=1﹣2sin2A﹣(2cos2B﹣1)=2﹣2sin2A﹣2cos2B,

∴2﹣2sin2A﹣2cos2B= ﹣2sin2A,

∴cos2B=

∴cosB=±

∴B=


(2)解:∵b= ≤a,∴B=

由正弦 =2,得a=2sinA,c=2sinC,

故2a﹣c=4sinA﹣2sinC=4sinA﹣2sin( π﹣A)=3sinA﹣ cosA=2 sin(A﹣ ),

因为b≤a,所以 ≤A< π, ≤A﹣

所以2a﹣c=2 sin(A﹣ )∈[ ,2


【解析】(1)由条件利用三角恒等变换化简可得 2﹣2sin2A﹣2cos2B= ﹣2sin2A,求得cos2B 的值,可得cosB的值,从而求得B的值.(2)由b= ≤a,可得B=60°.再由正弦定理可得2a﹣c=2 sin(A﹣ ),由 ≤A< π,可得 ≤A﹣ ,即可得解.
【考点精析】掌握两角和与差的余弦公式和余弦定理的定义是解答本题的根本,需要知道两角和与差的余弦公式:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表所示

参加社团活动

不参加社团活动

合计

学习积极性高

17

8

25

学习积极性一般

5

20

25

合计

22

28

50

(Ⅰ)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.
x2=

P(x2≥k)

0.05

0.01

0.001

K

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(
A.命题p:“?x0∈R, ”,则命题?p:?x∈R,x2﹣2x+1>0
B.“lna>lnb”是“2a>2b”的充要条件
C.命题“若x2=2,则 ”的逆否命题是“若 ,则x2≠2”
D.命题p:?x0∈R,1﹣x0<lnx0;命题q:对?x∈R,总有2x>0;则p∧q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在非零实数集上的函数,f′(x)为其导函数,且x>0时,xf′(x)﹣f(x)<0,记a= ,b= ,c= ,则(
A.a<b<c
B.c<a<b
C.b<a<c
D.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1 , 则下列说法不正确的是(
A.若点P在直线BC1上运动时,三棱锥A﹣D1PC的体积不变
B.若点P是平面A1B1C1D1上到点D和C1距离相等的点,则P点的轨迹是过D1点的直线
C.若点P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变
D.若点P在直线BC1上运动时,二面角P﹣AD1﹣C的大小不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2ex﹣ax﹣2(x∈R,a∈R).
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记min{x,y}= 设f(x)=min{x2 , x3},则(
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0},则A∪B= , A∩(RB)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲C的极坐标方程ρ=2sinθ,设直线L的参数方程 ,(t为参数)设直线L与x轴的交点M,N是曲线C上一动点,求|MN|的最大值

查看答案和解析>>

同步练习册答案