精英家教网 > 高中数学 > 题目详情
在空间直角坐标系中A(1,2,3),B (-1,0,5),C(3,0,4),D(4,1,3),则直线AB与CD的关系是
 
考点:共线向量与共面向量
专题:空间向量及应用
分析:由已知得
AB
=(-2,-2,2),
CD
=(1,1,-1),
AB
=-2
CD
,从而得到直线AB∥CD.
解答: 解:∵在空间直角坐标系中,
A(1,2,3),B (-1,0,5),C(3,0,4),D(4,1,3),
AB
=(-2,-2,2),
CD
=(1,1,-1),
AB
=-2
CD

∴直线AB∥CD.
故答案为:平行.
点评:本题考查空间中两直线的位置关系的判断,是基础题,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察2,5,10,17,26,…,则该数列第6项为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意x∈R,都有f(x+3)=-
1
f(x)
,且当x∈[-3,-2]时,f(x)=sin
πx
2
,则f(2014)=(  )
A、0
B、
1
2
C、-1
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c,已知
BA
BC
=-2,cosB=-
2
3
,b=
14
,求
(1)a和c的值;
(2)cos(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简
1+cos(3π-θ)
2
2
<θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
②已知命题p:对任意的x∈R,都有sinx≤1,则¬p:存在x∈R,使得sinx>1;
③函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
④函数y=
x+3
x-1
的图象关于点(-1,1)对称.
其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点为(-4,0),(4,0),椭圆上一点 P到两个焦点的距离之和为10,则椭圆方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
3
x3+x2+ax+b(x>-1).
(1)当a>
1
2
时,判断函数f(x)的单调性;
(2)若函数f(x)在其定义域上既有极大值又有极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

据报道,某市大学城今年4月份曾发生流感,据资料统计,4月1日,该大学城新的流感病毒感染者有4人,此后,每天新感染病毒的患者的人数平均比前一天新感染病毒的患者的人数多4人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天新感染病毒的患者的人数平均比前一天的新感染病毒的患者的人数减少2人,到4月30日止,该大学城在这30天内感染该病毒的患者总共有600人.问4月几日,该大学城感染此病毒的新患者(当天感染者)人数最多?并求出这一天的新患者的人数.

查看答案和解析>>

同步练习册答案