精英家教网 > 高中数学 > 题目详情
19.若2${A}_{n}^{3}$=3${A}_{n+1}^{2}$-8${A}_{n}^{1}$,则n的值为3.

分析 利用排列数公式可知n≥3,进而化简可知2n(n-1)(n-2)=3n(n+1)-8n,问题转化为解关于n的一元二次方程,进而计算可得结论.

解答 解:∵2${A}_{n}^{3}$=3${A}_{n+1}^{2}$-8${A}_{n}^{1}$,
∴n≥3,且2n(n-1)(n-2)=3n(n+1)-8n,
整理得:2n2-9n+9=0,
解得:n=3或n=$\frac{3}{2}$(舍),
故答案为:3.

点评 本题考查排列及排列数公式,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}满足an∈N*,且前10项和S10=280,则a9的最大值为(  )
A.29B.49C.50D.58

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果复数z满足|z|=1且z2=a+bi,其中a,b∈R,则a+b的最大值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设两条直线的方程分别为x+$\sqrt{3}$y+a=0,x+$\sqrt{3}$y+b=0,已知a,b是方程x2+2x+c=0的两个实根,且0≤c≤$\frac{1}{2}$,则这两条直线之间的距离的最大值和最小值的差为(  )
A.$\frac{{2-\sqrt{2}}}{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{4-\sqrt{14}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设集合A={1,2,3,5},B={2,3,6},则A∪B={1,2,3,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知Sn为数列{an}的前n项和,且满足an=2Sn-1+2(n≥2);数列{bn}满足b1+b2+b3+…+bn=n2+n.
(1)数列{an}是等比数列吗?请说明理由;
(Ⅱ)若a1=b1,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,则f($\frac{19π}{6}$)的值为(  )
A.0B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点P(x,y)是曲线C:$\left\{\begin{array}{l}{x=3+cosθ}\\{y=2+\sqrt{3}sinθ}\end{array}\right.$上的任意一点,求3x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若lgx+lgy=2,求5x+2y的最小值.

查看答案和解析>>

同步练习册答案