分析 利用α的取值范围和cos2α+sin2α=1求得sinα的值.然后结合两角和与差的余弦函数公式来求cosβ的值.
解答 解:∵α∈(0,$\frac{\;π\;}{2}$),β∈($\frac{\;π\;}{2}$,π),
∴sinα>0.cosβ<0,sinβ>0.
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\sqrt{1-\frac{1}{9}}$=$\frac{2\sqrt{2}}{3}$.
∴sin(α+β)=sinαcosβ+cosαsinβ=$\frac{2\sqrt{2}}{3}$cosβ+$\frac{1}{3}$×$\sqrt{1-co{s}^{2}β}$=-$\frac{3}{5}$,
解得cosβ=$-\frac{{4+6\sqrt{2}}}{15}$.
故答案是:$-\frac{{4+6\sqrt{2}}}{15}$.
点评 本题主要考查了两角和与差的余弦函数公式的运用.考查了学生基础知识的掌握.
科目:高中数学 来源: 题型:选择题
| A. | $y=\frac{2}{3}{x^{\frac{1}{3}}}$ | B. | $y={x^{-\frac{1}{3}}}$ | C. | $y=-\frac{2}{3}{x^{-\frac{1}{3}}}$ | D. | $y=\frac{2}{{3\root{3}{x}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 16 | C. | 32 | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①和②均为真命题 | B. | ①和②均为假命题 | ||
| C. | ①为真命题,②为假命题 | D. | ①为假命题,②为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为$\frac{π}{2}$ | B. | φ=$\frac{π}{9}$ | ||
| C. | 函数f(x)的图象关于直线x=$\frac{5π}{6}$对称 | D. | 函数f(x)在区间[0,$\frac{π}{4}$]上是增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com