精英家教网 > 高中数学 > 题目详情
某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为60°的扇形,则该几何体的侧面积为(  )
A、12+
10
3
π
B、6+
10
3
π
C、12+2π
D、6+4π
考点:由三视图求面积、体积
专题:计算题
分析:根据俯视图是中心角为60°的扇形,知几何体是
1
6
圆柱体,由正视图知母线长为3,底面半径为2,求出底面弧长,代入侧面积公式计算.
解答: 解:由三视图知几何体是
1
6
圆柱体,且母线长为3,底面半径为2,
∴弧长为
π
3
×2=
3

∴几何体的侧面积S=(
3
+2×2)×3=12+2π.
故选:C.
点评:本题考查了由三视图求几何体的侧面积,关键是判断三视图的数据所对应的几何量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程
x2
4-k
+
y2
k-1
=1
表示的曲线为C,则给出的下面四个命题:
(1)曲线C不能是圆
(2)若1<k<4,则曲线C为椭圆
(3)若曲线C为双曲线,则k<1或k>4
(4)若曲线C表示焦点在x轴上的椭圆,则1<k<
5
2

其中正确的命题是
 
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,该程序运行后输出的S的值是(  )
A、-3
B、-
1
2
C、
1
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的导数f′(x),f′(0)>0,且f(x)的值域为[0,+∞),则
f(1)
f′(0)
的最小值为(  )
A、3
B、
5
2
C、2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义一个集合A的所有子集组成的集合叫做集合A的幂集,记为P(A),用n(A)表示有限集A的元素个数,给出下列命题:
①对于任意集合A,都有A∈P(A);
②存在集合A,使得n[P(A)]=3;
③用∅表示空集,若A∩B=∅,则P(A)∩P(B)=∅;
④若A⊆B,则P(A)⊆P(B);
⑤若n(A)-n(B)=1,则n[P(A)]=2×n[P(B)].
其中正确的命题个数为(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)上点T(3,t)到焦点F的距离为4.
(Ⅰ)求t,p的值;
(Ⅱ)设A、B是抛物线上分别位于x轴两侧的两个动点,且
OA
OB
=5
(其中O为坐标原点).
(ⅰ)求证:直线AB必过定点,并求出该定点P的坐标;
(ⅱ)过点P作AB的垂线与抛物线交于C、D两点,求四边形ACBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4x+1,求函数y=f[f(x)]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点O,左顶点A(-2,0),离心率e=
1
2
,F为右焦点,过焦点F的直线交椭圆C于P、Q两点(不同于点A).
(Ⅰ)求椭圆C的方程;
(Ⅱ)当△APQ的面积S=
18
2
7
时,求直线PQ的方程;
(Ⅲ)求
OP
FP
的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题“?x0∈R,2x02-3mx0+9<0”为假命题,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案