精英家教网 > 高中数学 > 题目详情
7.已知f(x)=$\left\{\begin{array}{l}{\sqrt{x}(0≤x≤1)}\\{\sqrt{2x-{x}^{2}}(1<x≤2)}\end{array}\right.$.
(1)求f(x)的最大值;
(2)求f(x)与x轴围成的面积.

分析 (1)分别求出x∈[0,1]和x∈(1,2]时f(x)的最大值即可得出结论;
(2)根据定积分的定义计算f(x)与x轴围成的面积即可.

解答 解:(1)当x∈[0,1]时,f(x)=$\sqrt{x}$是单调增函数,
此时当x=1时,f(x)取得最大值1;
当x∈(1,2]时,f(x)=$\sqrt{2x{-x}^{2}}$=$\sqrt{1{-(x-1)}^{2}}$<1;
综上,f(x)的最大值是1;
(2)f(x)与x轴围成的面积为
S=${∫}_{0}^{2}$f(x)dx=${∫}_{0}^{1}$$\sqrt{x}$dx+${∫}_{1}^{2}$$\sqrt{2x{-x}^{2}}$dx
=$\frac{2}{3}$${x}^{\frac{3}{2}}$${|}_{0}^{1}$+$\frac{1}{4}$π×12
=$\frac{2}{3}$+$\frac{π}{4}$.

点评 本题考查了分段函数与定积分的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F.直线l:2x-y=0交椭圆E于A,B两点.若|AF|+|BF|=6,点F到直线l的距离不小于2,则椭圆E的离心率的取值范围是(  )
A.(0,$\frac{\sqrt{5}}{3}$]B.[$\frac{\sqrt{5}}{3}$,1)C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重,大气污染可引起心悸,呼吸困难等心肺疾病,为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如下的列联表:
  患心肺疾病 不患心肺疾病 合计
 男 20 5 25
 女 10 15 25
 合计 30 20 50
(1)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由
(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3位进行其他方面的排查,其中患胃病的人数为ξ,求ξ的分布列、数学期望
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
下面的临界值表仅供参考.
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=2,A=$\frac{π}{3}$.
(1)当$\frac{\sqrt{3}}{2}$-sin(B-C)=sin2B时,求△ABC的面积;
(2)求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,一个简单几何体的三视图均为面积等于3的等腰直角三角形,则该几何体的体积为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.现有八个数,它们能构成一个以1为首项.-3为公比的等比数列,若从这八个数中随机抽取一个数,则它大于8的概率是(  )
A.$\frac{7}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i为虚数单位,复数z=$\frac{1-i}{2+i}$,则z的共轭复数是(  )
A.$\frac{1}{5}$+$\frac{3}{5}$iB.$\frac{1}{3}$-iC.$\frac{1}{5}$-$\frac{3}{5}$iD.$\frac{1}{3}$+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中的正确的个数为(  )
①若m∥n,m⊥α,则n⊥α;②若m⊥α,m∥n,n∥β,则α⊥β;
③若m⊥α,m⊥β,则α∥β;④若m∥α,n∥β,α∥β,则m∥n.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:$\frac{\sqrt{1+2sin280°•cos440°}}{sin260°+cos800°}$.

查看答案和解析>>

同步练习册答案