分析 (1)分别求出x∈[0,1]和x∈(1,2]时f(x)的最大值即可得出结论;
(2)根据定积分的定义计算f(x)与x轴围成的面积即可.
解答 解:(1)当x∈[0,1]时,f(x)=$\sqrt{x}$是单调增函数,
此时当x=1时,f(x)取得最大值1;
当x∈(1,2]时,f(x)=$\sqrt{2x{-x}^{2}}$=$\sqrt{1{-(x-1)}^{2}}$<1;
综上,f(x)的最大值是1;
(2)f(x)与x轴围成的面积为
S=${∫}_{0}^{2}$f(x)dx=${∫}_{0}^{1}$$\sqrt{x}$dx+${∫}_{1}^{2}$$\sqrt{2x{-x}^{2}}$dx
=$\frac{2}{3}$${x}^{\frac{3}{2}}$${|}_{0}^{1}$+$\frac{1}{4}$π×12
=$\frac{2}{3}$+$\frac{π}{4}$.
点评 本题考查了分段函数与定积分的计算问题,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{\sqrt{5}}{3}$] | B. | [$\frac{\sqrt{5}}{3}$,1) | C. | [$\frac{1}{2}$,1) | D. | (0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 患心肺疾病 | 不患心肺疾病 | 合计 | |
| 男 | 20 | 5 | 25 |
| 女 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$+$\frac{3}{5}$i | B. | $\frac{1}{3}$-i | C. | $\frac{1}{5}$-$\frac{3}{5}$i | D. | $\frac{1}{3}$+i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com