精英家教网 > 高中数学 > 题目详情
若f(x)=
lgx,x>0
f(x+1)+1,x≤0
,则f(-2)=(  )
A、-2B、1C、2D、3
考点:抽象函数及其应用,分段函数的应用
专题:函数的性质及应用
分析:根据自变量的不同取值,适当选取分段函数的表达式,代入即可得到结论.
解答: 解:∵-2<0,∴f(-2)=f(-2+1)+1=f(-1)+1,
又f(-1)=f(-1+1)+1=f(0)+1=f(0+1)+1+1=f(1)+2;
∴f(-2)=f(-1)+1=f(1)+3,
∵f(1)=lg1=0,
∴f(-2)=0+3=3
故选:D.
点评:本题主要考查函数值的计算,根据分段函数的表达式以及对数的运算是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A={x|-2<x≤2},B={x|0≤x≤4},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β是二个不同的平面,m,n是二条不同直线,给出下列命题:
①若m∥n,m⊥α,则n⊥α;
②若m∥α,α∩β=n则m⊥n;
③若m⊥α,m⊥β则α∥β;
④若m⊥α,m?β,则α⊥β,
真命题共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是平面内的一组基底,则下列四组向量能作为平面向量的基底的是(  )
A、
e1
-
e2
e2
-
e1
B、2
e1
-
e2
e1
-
1
2
e2
C、2
e2
-3
e1
,6
e1
-4
e2
D、
e1
+
e2
e1
-
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

f:x→
x+1
可以构成实数集R到自身的一个映射.
 
(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex的图象与g(x)的图象关于直线y=x对称.
(1)若直线y=kx+1与g(x)的图象相切,求实数k的值;
(2)判断曲线y=f(x)与曲线y=
1
2
x2+ax+1(a∈R)公共点的个数;
(3)设a<b,比较f(
a+b
2
)与
f(b)-f(a)
b-a
的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,已知
OA
=(4,-4),
OB
=(5,1),
OB
OA
方向上的射影数量为|
OM
|,求
MB
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinθ,cosθ,
2
),
b
=(cosθ,sinθ,
2
2
),且
a
b
,则θ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,M,N,P分别为线段AB,CD,C1D1的中点.求证:
(1)C1M∥平面ANPA1
(2)平面C1MC∥平面ANPA1

查看答案和解析>>

同步练习册答案