精英家教网 > 高中数学 > 题目详情
18.已知集合A={x|y=ln(1-2x)},B={x|x2≤x},则∁A∪B(A∩B)=(  )
A.(-∞,0)B.(-$\frac{1}{2}$,1]C.(-∞,0)∪[$\frac{1}{2}$,1]D.(-$\frac{1}{2}$,0]

分析 分别求出关于集合A、B中的x的范围,从而求出A∪B,A∩B,进而求出∁A∪B(A∩B).

解答 解:∵集合A={x|y=ln(1-2x)},
∴A={x|1-2x>0}={x|x<$\frac{1}{2}$},
∵B={x|x2≤x}={x|0≤x≤1},
∴A∪B={x|x≤1},A∩B={x|0≤x<$\frac{1}{2}$},
∴∁A∪B(A∩B)=(-∞,0)∪[$\frac{1}{2}$,1],
故选:C.

点评 本题考查了集合的交、并、补集的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2x的反函数为f-1(x)
(1)若f-1(x)-f-1(1-x)=1,求实数x的值;
(2)若关于x的方程f(x)+f(1-x)-m=0在区间[0,2]内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,平面α∥平面β∥平面γ,两条直线l,m分别与平面α、β、γ相交于点A、B、C和点D、E、F.已知AC=15cm,DE=5cm,AB:BC=1:3,求AB、BC、EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一个盒中有6个球,其中红球2个,黑球3个,白球1个,现从中任取3个球,用列举法求下列事件的概率:
(1)求取出3个球是不同颜色的概率.
(2)恰有两个黑球的概率.
(3)至少有一个黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$ax2+2x,a≠0.
(1)若函数h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(2)若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市为了治理污染,改善空气质量,市环境保护局决定每天在城区主要路段洒水防尘,为了给洒水车供水,供水部门决定最多修建3处供水站.根据过去30个月的资料显示,每月洒水量X(单位:百立方米)与气温和降雨量有关,且每月的洒水量都在20以上,其中不足40的月份有10个月,不低于40且不超过60的月份有15个月,超过60的月份有5个月.将月洒水量在以上三段的频率作为相应的概率,并假设各月的洒水量相互独立.
(Ⅰ)求未来的3个月中,至多有1个月的洒水量超过60的概率;
(Ⅱ)供水部门希望修建的供水站尽可能运行,但每月供水站运行的数量受月洒水量限制,有如下关系:
月洒水量20<X<4040≤X≤60X>60
供水站运行的最多数量123
若某供水站运行,月利润为12000元;若某供水站不运行,月亏损6000元.欲使供水站的月总利润的均值最大,应修建几处供水站?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点为F,过F的直线l交椭圆于A、B两点,且$\frac{5}{2}$≤|AF|•|BF|$≤\frac{11}{4}$,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.推导直线Ax+By+C=0(A2+B2≠0)与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-alnx+$\frac{1+a}{x}$(a∈R).
(1)求函数f(x)的单调区间;
(2)若存在x0∈[1,e](e=2.718…),使得f(x0)<0成立,求a的取值范围.

查看答案和解析>>

同步练习册答案