精英家教网 > 高中数学 > 题目详情
19.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-4≤0}\\{x+y-2≤0}\\{x≥0}\end{array}\right.$,则目标函数z=2x+3y的最大值为(  )
A.9B.10C.11D.12

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式对应的平面区域(阴影部分),
由z=2x+3y,得y=$-\frac{2}{3}x+\frac{z}{3}$,
平移直线y=$-\frac{2}{3}x+\frac{z}{3}$,由图象可知当直线y=$-\frac{2}{3}x+\frac{z}{3}$经过点A时,直线y=$-\frac{2}{3}x+\frac{z}{3}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x=0}\\{x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=4}\end{array}\right.$,
即A(0,4).
此时z的最大值为z=3×4=12
故选:D.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知$\frac{a+2i}{b+i}$=i(a,b∈R),其中i为虚数单位,则a+b等于(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2lnx+$\frac{m}{x+1}$.
(I)当函数f(x)在点(1,f(1))处的切线与直线y-4x+1=0垂直时,求实数m的值;
(Ⅱ)若x≥1时,f(x)≥1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=sin2x-2sin2x.
(1)求函数f(x)的最小正周期;
(2)求函数y=f(x)在[-$\frac{π}{4}$,$\frac{3π}{8}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.六个人排成一排照相,其中甲不站在两端的排法种数为480.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=log${\;}_{\frac{1}{3}}$3,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=$\sqrt{\frac{2}{3}}$,则下列正确的是(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数F(x)=lnx,f(x)=$\frac{1}{2}$x2+a,a为常数,直线l与函数F(x)和f(x)的图象都相切,且l与函数F(x)的图象的切点的横坐标等于1.
(Ⅰ)求直线l的方程和a的值;
(Ⅱ)求证:关于x的不等式F(1+x2)≤ln2+f(x)的解集为(-∞,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=lg(-x)的定义域为A,函数y=ex的值域为B,则A∩B=(  )
A.(0,+∞)B.(0,e)C.RD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设全集U=R,集合A={x|x+1≤0},B={x|x2-2<0},则A∩B=(-$\sqrt{2}$,-1],A∪B=(-∞,$\sqrt{2}$),∁UB=(-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞).

查看答案和解析>>

同步练习册答案