分析 (1)由条件利用三点共线的性质求得y=x+sinx,由此根据奇偶函数的定义判断该函数的奇偶性,再利用导数判断函数的单调性.
(2)不等式即f(1-m)>-f(m2-1)=f(1-m2),再利用单调性以及定义域求得m的范围.
解答 解:(1)∵点P在直线AB上,且满足$\overrightarrow{OP}$=(x-y)$\overrightarrow{OA}$+(sinx+1)$\overrightarrow{OB}$,x∈[-1,1],
∴x-y+(sinx+1)=1,即y=x+sinx.
由于y=f(x)=x+sinx 的定义域为[-1,1],关于原点对称,
且满足f(-x)=-x+sin(-x)═-(x+sinx)=-f(x),
故函数y=f(x)为奇函数.
由y′=1+cosx在[-1,1]上大于零或等于零恒成立,故函数f(x)在[-1,1]上为增函数.
(2)不等式f(1-m)+f(m2-1)>0恒成立,即f(1-m)>-f(m2-1)=f(1-m2),
∴$\left\{\begin{array}{l}{-1≤1-m≤1}\\{-1{≤m}^{2}-1≤1}\\{1-m>1{-m}^{2}}\end{array}\right.$,求得1<m≤$\sqrt{2}$.
点评 本题主要考查三点共线的性质,函数的奇偶性和单调性,解抽象不等式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{24}$ | B. | $\frac{π}{12}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | -1 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{13\sqrt{3}}}{12}$ | B. | $\frac{{5\sqrt{3}}}{4}$ | C. | $\frac{5}{12}$ | D. | $\frac{{5\sqrt{3}}}{12}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com