精英家教网 > 高中数学 > 题目详情
15.据报道,某淡水湖的湖水在50年内减少了10%,若按此规律,设2013年的湖水量为m,从2013年起,经过x年后湖水量y与x的函数关系为(  )
A.y=0.9${\;}^{\frac{x}{50}}$B.y=(1-0.1${\;}^{\frac{x}{50}}$)mC.y=0.9${\;}^{\frac{x}{50}}$mD.y=(1-0.150x)m

分析 首先应该确定湖水量的年平均变化率,然后在建立湖水量y与x的函数关系即可.

解答 解:设淡水湖的湖水的年平均变化率为P,则P50=0.9,
∴P=${0.9}^{\frac{1}{50}}$,
∴设2013年的湖水量为m,经过x年后湖水量y与x的函数关系是y=m${•0.9}^{\frac{x}{50}}$
故选:C.

点评 本题考查的是根据实际问题选择函数模型的问题.在解答的过程当中充分体现了应用题的特点,平均变化率的求法以及指数型函数解析式是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[0,1]上单调递增,设a=f(3),b=f(1.2),c=f(2),则a,b,c大小关系是(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线l经过点P(-1,7),与圆C:x2+(y-4)2=5相交得弦AB,若弦AB是该圆中经过点P的所有弦中最长的弦,则直线l的方程为3x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知圆M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别与圆M切于点AB.
(1)若|AB|=$\frac{4\sqrt{2}}{3}$,求直线MQ的方程;
(2)若Q点的坐标为(-2,0),求:
①△AQB外接圆的方程;
②直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)的定义域为R,f(-1)=2015,对任意的x∈R.都有f′(x)<3x2成立,则不等式f(x)<x3+2016的解集为(  )
A.(-1,+∞)B.(-1,0)C.(-∞,-1)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有(  )种.
A.20B.24.C.36D.54

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={1,a2},实数a不能取的值的集合是(  )
A.{-1,1}B.{-1}C.{-1,0,1}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{2n•(-1)n}的前2015项和是-2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{bn}中,b1=0,bn+1=3bn+2(n∈N),数列{an}的前n项和为Sn,且Sn-1=bn
(1)求an
(2)求数列{$\frac{{3}^{n}}{{b}_{n+1}{b}_{n+2}}$}的前n(n∈N)项的和;
(3)数列{nan}的前n项和Tn,求Tn-(n-$\frac{1}{2}$)•3n-1

查看答案和解析>>

同步练习册答案