精英家教网 > 高中数学 > 题目详情
a和b是两条异面直线,下列结论正确的个数是(  )
(1) 过不在a、b上的任一点,可作一个平面与a、b都平行.
(2) 过不在a、b上的任一点,可作一条直线与a、b都相交.
(3) 过a可以并且只可以作一个平面与b平行.
(4) 过不在a、b上的任一点,可作一条直线与a、b都垂直.
A.1B.2C.3D.4
B

试题分析:(1)过点作平面和直线平行的平面可能正好经过直线,(1)错;(2)过点和直线确定的平面和平行时,满足条件的直线不存在,(2)错;(3)在上任取一点,过点,过可确定面,则,(3)正确;(4)作面,使得,只需作,则,(4)正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,面,底面是直角梯形,侧面是等腰直角三角形.且

(1)判断的位置关系;
(2)求三棱锥的体积;
(3)若点是线段上一点,当//平面时,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,为平行四边形,且的中点,

(Ⅰ)求证://
(Ⅱ)求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上动点,F是AB中点,AC = 1,BC = 2,AA1 = 4.

(Ⅰ)当E是棱CC1中点时,求证:CF∥平面AEB1
(Ⅱ)在棱CC1上是否存在点E,使得二面角A—EB1—B的余弦值是,若存在,求CE的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个互不重合的平面,是两条不重合的直线,则下列命题中正确的是(   )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线以及平面,给出下列命题:
①若,则
②若,则
③若,则
④若
其中正确的命题是(      )
A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列条件下,可判断平面与平面平行的是(     )
A.α、β都垂直于平面γ
B.α内不共线的三个点到β的距离相等
C.l,m是α内两条直线且l∥β,m∥β
D.l,m是异面直线,且l∥α,m∥α,l∥β,m∥β

查看答案和解析>>

同步练习册答案