精英家教网 > 高中数学 > 题目详情
已知f(x)=2cos(
π
2
-x)cosx-
3
cos2x
,x∈R,
(1)求f(
π
6
)
的值;
(2)当x∈[0,
π
2
]
时,求f(x)的最值.
考点:三角函数中的恒等变换应用
专题:三角函数的求值
分析:(1)利用二倍角公式、辅助角公式化简函数,代入计算,即可求f(
π
6
)
的值;
(2)当x∈[0,
π
2
]
时,2x-
π
3
∈[-
π
3
3
],利用正弦函数的性质,即可求f(x)的最值.
解答: 解:(1)∵f(x)=2sinxcosx-
3
cos2x=sin2x-
3
cos2x=2sin(2x-
π
3
),
f(
π
6
)
=2sin(2•
π
6
-
π
3
)=0;
(2)∵x∈[0,
π
2
]
时,
∴2x-
π
3
∈[-
π
3
3
],
∴sin(2x-
π
3
)∈[-
3
2
,1],
∴2sin(2x-
π
3
)∈[-
3
,2],
f(x)max=2,f(x)min=-
3
点评:本题考查三角函数的化简,考查三角函数的性质,考查学生的计算能力,正确化简函数是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn等比数列{an}的前n项和,且a2=
1
9
S2=
4
9

(1)求数列{an}的通项;
(2)设bn=
n
an
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,以(
a
2
π
2
)为圆心,
a
2
为半径的圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆C:x2+y2+4x+ay-5=0上任意一点,P点关于直线2x+y-1=0的对称点在圆上,则实数a等于(  )
A、10B、-10
C、20D、-20

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,这个几何体可能是一个(  )
A、三棱锥
B、底面不规则的四棱锥
C、三棱柱
D、底面为正方形的四棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)的准线为L,焦点为F,⊙M的圆心在y轴的正半轴上,且与x轴相切,过原点作倾斜角为
π
6
的直线n,交L于点A,交⊙M于另一点B,且|AO|=|OB|=2
(Ⅰ)求⊙M和抛物线C的方程;
(Ⅱ)过L上的动点Q作⊙M的切线,切点为S、T,求当坐标原点O到直线ST的距离取得最大值时,四边形QSMT的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)一动圆过定点P(0,1),且与定直线l:y=-1相切.
(1)求动圆圆心C的轨迹方程;
(2)若(1)中的轨迹上两动点记为A(x1,y1),B(x2,y2),且x1x2=-16.
①求证:直线AB过一定点,并求该定点坐标;
②求|PA|+|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
6
)-cos(x+
π
3
),g(x)=2sin2
x
2

(Ⅰ)若α是第一象限角,且f(a)=
3
3
5
,求g(a)的值;
(Ⅱ)求函数f(x)+g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,求A(2,
4
)
到这条直线的距离.

查看答案和解析>>

同步练习册答案