精英家教网 > 高中数学 > 题目详情
已知抛物线C:x2=2py(p>0)的准线为L,焦点为F,⊙M的圆心在y轴的正半轴上,且与x轴相切,过原点作倾斜角为
π
6
的直线n,交L于点A,交⊙M于另一点B,且|AO|=|OB|=2
(Ⅰ)求⊙M和抛物线C的方程;
(Ⅱ)过L上的动点Q作⊙M的切线,切点为S、T,求当坐标原点O到直线ST的距离取得最大值时,四边形QSMT的面积.
考点:圆与圆锥曲线的综合
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)画出图形,设准线交y轴于N,在直角三角形ANO中,结合已知条件求出|ON|即p的值,则抛物线方程可求,在三角形MOB中,由三角形为正三角形得到|OM|的值,从而求得圆的方程;
(Ⅱ)设出两个切点的坐标,求出两条切线的方程,进一步得到ST所在直线方程,写出原点到ST的距离,分析可知当a=0时即Q在y轴上时原点到ST的距离最大,由此求出ST与MQ的长度,则四边形QSMT的面积可求.
解答: 解:(Ⅰ)如图,

设准线L交y轴于N(0,-
p
2
)
,在Rt△OAN中,∠OAN=
π
6

|ON|=
|OA|
2
=1

∴p=2,则抛物线方程是x2=4y;
在△OMB中有OM=OB,∠MOB=
π
3

∴OM=OB=2,
∴⊙M方程是:x2+(y-2)2=4;
(Ⅱ)设S(x1,y1),T(x2,y2),Q(a,-1)
∴切线SQ:x1x+(y1-2)(y-2)=4;切线TQ:x2x+(y2-2)(y-2)=4,
∵SQ和TQ交于Q点,
∴ax1-3(y1-2)=4和ax2-3(y2-2)=4成立,
∴ST方程:ax-3y+2=0.
∴原点到ST距离d=
2
a2+9
,当a=0,即Q在y轴上时d有最大值.
此时直线ST方程是y=
2
3

代入x2+(y-2)2=4,得x=±
2
5
3

|ST|=
4
5
3
,|MQ|=3

此时四边形QSMT的面积S=
1
2
×
4
5
3
×3=2
5
点评:本题主要考查圆与圆锥曲线的综合问题,其中涉及到抛物线以及圆的标准方程的求法,考查了圆的切线方程的求法及过圆切点的直线方程的求法,综合考查了学生分析问题的能力和基础的运算能力,是有一定难度题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上面是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD-A2B2C2D2.现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC底面的三个顶点A、B、C在球O的同一个大圆上,点P在球面上,如果VP-ABC=
3
4
,则球O的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,点A、B分别是x轴、y轴上两个动点,又有一定点M(3,4),则|MA|+|AB|+|BM|的最小值是(  )
A、10B、11C、12D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2cos(
π
2
-x)cosx-
3
cos2x
,x∈R,
(1)求f(
π
6
)
的值;
(2)当x∈[0,
π
2
]
时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
m
-y2=1
的一条渐近线和圆x2+y2-4x+3=0相切,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一项射击实验的标靶为圆形.在子弹命中标靶的前提下,一次射击能够击中标靶的内接正方形的概率是(  )
A、50%
B、
3
π
C、0.2π
D、
2
π

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的 棱长为a,在正方体内随机取一点M,则点M落在三棱锥B1-A1BC1内的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+x2-ax(a∈R,且a≠0).如果存在实数a∈(-∞,-1],使函数g(x)=f(x)+f′(x),x∈[-1,b](b>-1)在x=-1处取得最小值,则实数b的最大值为
 

查看答案和解析>>

同步练习册答案