分析 先根据对数函数的单调性,和二次函数图象和x轴交点的情况与判别式的关系即可求出命题p,q下的a的取值范围.根据p∧q为假,p∨q为真即可判断p,q的真假情况,根据p,q的真假情况即可求出a的取值范围.
解答 解:p:∵函数y=loga(x+1)在(0,+∞)上单调递减;
∴0<a<1;
q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点;
∴△=(2a-3)2-4>0,解得a<$\frac{1}{2}$,或a>$\frac{5}{2}$;
∵p∧q为假,p∨q为真,
∴p,q一真一假;
若p真q假,则:0<a<1,且$\frac{1}{2}$≤a≤$\frac{5}{2}$,
∴$\frac{1}{2}$≤a<1;
若p假q真,则:a>1,且a<$\frac{1}{2}$,或a>$\frac{5}{2}$,
∴a>$\frac{5}{2}$;
∴实数a的取值范围为[$\frac{1}{2}$,1)∪($\frac{5}{2}$,+∞).
点评 本题考查对数函数的单调性,二次函数图象和x轴交点的情况与判别式△的关系,p∧q,p∨q的真假和p,q真假的关系.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{5π}{4}$ | C. | $\frac{7π}{8}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{3}}}{2}$ | B. | $\frac{{5\sqrt{3}}}{2}$ | C. | $\frac{11}{2}$ | D. | $\frac{13}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m∈(-$\frac{1}{2}$,+∞) | B. | m∈(-$\frac{1}{2}$,1) | C. | m∈[-$\frac{1}{2}$,+∞) | D. | m∈[-$\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 3$\sqrt{2}$ | C. | 4$\sqrt{2}$ | D. | 5$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 102 | B. | 104 | C. | 112 | D. | 114 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com