精英家教网 > 高中数学 > 题目详情
函数f(x)在x=x0处导数存在,若命题p:f′(x0)=0;命题q:x=x0是f(x)的极值点,则p是q的(  )
A、充要条件
B、充分不必要的条件
C、必要不充分的条件
D、既不充分也不必要的条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.
解答: 解:已知函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.
根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,
故p是q的必要不充分条件,
故选:C.
点评:本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集I={不大于15的质数},A∪B={2,3,5,13},∁IA∩B={13},A∩∁IB={3,5},则A=
 
,B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a为常数,?x∈R,f(x)=a2x2+ax+1>0,则a的取值范围是(  )
A、a<0B、a≤0
C、a>0D、a∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax7+bx5+cx3+
d
x
+6,若f(3)=5,则f(-3)=(  )
A、-5B、7C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx2+cx+d在x=0处有极大值1,在x=2处有极小值0,则常数a,b,c,d分别为(  )
A、-
1
4
,-
3
4
,0,1
B、-
1
4
,-
3
4
,0,-1
C、
1
4
,-
3
4
,0,-1
D、
1
4
,-
3
4
,0,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={1,2,3,5},N={x|x=2k-1,k∈M},则M∩N=(  )
A、{1,2,3}
B、{1,3,5}
C、{2,3,5}
D、{1,3,4,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-3,(x>0)
x2+bx+c,(x≤0)
,若f(-4)=f(0),f(-2)=0,则关于x的不等式f(x)≤1的解集为(  )
A、(-∞,-3]∪[-1,+∞)
B、[-3,-1]
C、[-3,-1]∪(0,+∞)
D、[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,Sn=48,S2n=60,则S3n等于(  )
A、26B、27C、62D、63

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=1,an+1=3Sn(n≥1),则下列结论正确的是(  )
A、数列{an}是等比数列
B、数列a2,a3,…,an是等比数列
C、数列{an}是等差数列
D、数列a2,a3,…,an是等差数列

查看答案和解析>>

同步练习册答案