精英家教网 > 高中数学 > 题目详情
16.方程(x+$\frac{a}{b}$$\sqrt{{b}^{2}-{y}^{2}}$)2+(y-$\frac{b}{a}$$\sqrt{{a}^{2}-{x}^{2}}$)2=0所表示的曲线的图形是(  )
A.B.C.D.

分析 将方程等价变形,即可得出结论

解答 解:由(x+$\frac{a}{b}$$\sqrt{{b}^{2}-{y}^{2}}$)2+(y-$\frac{b}{a}$$\sqrt{{a}^{2}-{x}^{2}}$)2=0,得x=-$\frac{a}{b}$$\sqrt{{b}^{2}-{y}^{2}}$且y=$\frac{b}{a}$$\sqrt{{a}^{2}-{x}^{2}}$.
∴ab>0,方程(x+$\frac{a}{b}$$\sqrt{{b}^{2}-{y}^{2}}$)2+(y-$\frac{b}{a}$$\sqrt{{a}^{2}-{x}^{2}}$)2=0表示椭圆在第二象限的部分,
ab<0,则x>0,y<0,无选项.
故选:B

点评 本题考查轨迹方程,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图所示,在平面直角坐标系xOy中,点B,C分别在x轴和y轴非负半轴上,点A在第一象限,且∠BAC=90°,AB=AC=4,那么O,A两点间距离的(  )
A.最大值是$4\sqrt{2}$,最小值是4B.最大值是8,最小值是4
C.最大值是$4\sqrt{2}$,最小值是2D.最大值是8,最小值是2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,a1=-1,Sn=2an+n(n∈N*),则an=1-2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左右焦点,上下顶点依次为F1,F2,B1,B2,若四边形F1B1F2B2的面积为8,且椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M,N在椭圆C上,若M,F2,N三点共线,且$\overrightarrow{{F}_{1}{F}_{2}}$=$\frac{1}{3}$$\overrightarrow{{F}_{1}M}$+λ$\overrightarrow{{F}_{1}N}$(λ∈R),求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在三棱锥P-ABC中,AC=BC=AP=BP=$\sqrt{2}$,PC=$\sqrt{3}$,AB=2.求证:PC⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.P是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)上一点,F是C上的右焦点,PF⊥x轴,A,B分别是椭圆C上两个顶点,且AB∥OP,则C的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{x+1}{x}$图象的对称中心为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且满足Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,数列{log3bn}{n∈N*}为等差数列,且b1=3,b3=27.
(1)求数列{an}与{bn}的通项公式;
(2)若cn=an-$\frac{5}{12}$,Tn=b1c1+b2c2+b3c3+…+bncn,求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{x}{1+x}$,g(x)=ln(x+1).
(1)求函数 H1(x)=f(x)-g(x)的最大值;
(2)记 H2(x)=g(x)-bx,是否存在实数b,使 H2(x)<0在(0,+∞)上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
(3)证明:-1<$\sum_{k=1}^n{\frac{k}{{{k^2}+1}}}$-lnn≤$\frac{1}{2}$(n=1,2,…).

查看答案和解析>>

同步练习册答案